SEMFIRE

SEGURANCA, EXPLORACAO E MANUTENCAO DE FLORESTAS
COM INTEGRACAO DE ROBOTICA ECOLOGICA

E4.2b: Initial Deployment of Scouts under Connectivity
Constraints

IBDCO=NIA<NUS

ERA

ultimate
UNIVERSIDADE B

COIMBRA

© 2021

All rights reserved. This document may not be reproduced in whole or in part, by photocopy
or other means, without the permission of the consortium.

Cofinanciado por:

CENTRO" #2020

Document Identification

Title SEMFIRE: Seguranga, Exploragao e Manutengao de
Florestas com Integracao de Robética Ecoldgica

Reference CENTRO-01-0247-FEDER-032691

Duration 2018-10-01 - 2021-09-30

Head of Consortium
(Chefe do Consdreio)

Copromoters
(Copromotores)

Coordinator

Ingeniarius, Lda.

(Ingeniarius)

Instituto de Sistemas e Robdtica da Universidade de Coimbra
(ISR-UC), SFera Ultimate, Lda. (SFera)

Micael S. Couceiro
(Ingeniarius)

Work Package/Deliverable

Work Package

A4. Multi-Robot Coordination in the Forestry Envi-

(Atividade) ronment
(Coordenagao Multi-Robo em Ambiente Florestal)
Deliverable E4.2b: Initial Deployment of Scouts under Connectivity Con-
(Entregdvel) straints
(Implantagio de Scouts com Restrigoes de Conetividade)
Lead Copromoter Ingeniarius
Due Date 2020-07-31
(Més) (M22)
Change Record
Version Date Author Summary of Changes
v0.9 2021-09-30 Ali Ahmadi Contribution for Ch. 4
v1.0 2021-11-23 Joao Filipe Ferreira Final Version

il

iv

Contents

1

2

5

Introduction 1
Literature review 2
Initial deployment strategy 5
Fault-Tolerant Formation Control, Collision and Obstacle Avoidance Un-
der Connectivity Constraints 7
4.1 The MRS-UAV system in the context of the SEMFIRE project 7
4.2 Tests and parameter calibration for a single agent using MRS-UAV 10
4.2.1 Testing scenario definition oL 0oL 10
4.2.2 Parameter list and evaluation for behaviour calibration 10
4.2.3 Testing experimentso Lo 13
4.2.4 Final parameter combination experiments and parameter set choice . 35
4.3 Formation control strategies — implementation using MRS-UAV 35
4.3.1 Imtroduction e 35
4.3.2 Literature review e 41
4.3.3 Selecting the right solution for the SEMFIRE use case scenarios . . . 49
4.3.4 Implementation and Simulation 0L 49
Conclusion 50

vi

List of Figures

1

T W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Tllustration of the heterogeneous multi-robot system deployment in the SEM-
FIRE project: 1) the Ranger, a large-sized powerful tracked mobile mulcher;
2) a Scout a small assistive flying robot and member of a fleet of such robots,
that can help in exploring and supervising wide forestry areas and aid in the

Ranger’s navigation capabilities. Figure reproduced from [16]. 1
Extended Spiral of Theodorus. Figure reproduced from [17]. 5
The Ranger. 6
A diagram of the MRS UAV system architecture [6]. 8

Swarms of multirotor UAVs testing novel flocking algorithms while localized
(a) by a GNSS system, or (b) by onboard sensors only within a forest envi-

ronment. Figure reproduced from [6].. oo L 8
MRS UAV system in simulated scenario designed and implemented for the
SEMFIRE project. e 9

Proposed single UAV testing and calibration scenario for MRS-UAV in simula-
tion. Gray squares : Obstacles (width=1m, depth=1m, height=10m); Green
line : Desired path; Drone safety volume : width=0.696m , depth=0.696m |,

height=0.245m. L 11
Safe distance and minimum distance threshold definition. 12
Traversed paths for the 10 trials of Experiment #1.. 14
Traversed paths for Experiment #2. 15
Result plots Experiment #2. 0L 16
Traversed paths for Experiment #3. 16
Result plots Experiment #3. o oL 17
Traversed paths for Experiment #4. 18
Result plots Experiment #4. 19
Traversed paths for Experiment #5. 19
Result plots Experiment #5. oo o 20
Traversed paths for Experiment #6. 21
Result plots Experiment #6. 22
Traversed paths for Experiment #7. 24
Result plots Experiment #7. 25
Traversed paths for Experiment #8. 25
Result plots Experiment #8. oo oL 26
Traversed paths for Experiment #9. 27
Result plots Experiment #9. o oo 28
Traversed paths for Experiment #10. 28
Result plots Experiment #10. 29
Traversed paths for Experiment #11.. 30
Result plots Experiment #11. o oL 31
Traversed paths for Experiment #12.. 31
Result plots Experiment #12. 0o 32
Traversed paths for Experiment #13. 33
Result plots Experiment #13. oo oL 34
Traversed paths for Experiment #14. 36
Result plots Experiment #14. o oL 37
Traversed paths for Experiment #15. 37
Result plots Experiment #15. 38
Sensing capability vs. interaction topology (adapted from [48]). 42
System integration as a ROS framework. 51

vii

viii

1 Introduction

The SEMFIRE project [16] encompasses several challenges within the field of forestry
robotics and field robotics in general. This deliverable addresses one of these challenges
in the context of the activity #4 of the project: multi-robot coordination in the forestry
environment. More specifically, this deliverable addresses the initial deployment of scouts
according with the heterogeneous multi-robot system proposed in the project [16]. The com-
plete definition of the use-case scenario and its requirements is presented in the deliverable
E.1.1 [61].

Fig. 1 depicts the use-case scenario envisioned in the SEMFIRE project. The SEMFIRE
solution involves a heterogeneous multi-robot team comprising a Ranger and a set of Scouts
[16]. The Ranger is a large-sized powerful multi-purpose tracked robotic mulcher based on
the Bobcat platform. It can operate autonomously or semi-autonomously to clear forestry
areas, being equipped with a forestry mulcher attachment to cut down thin trees and shred
ground vegetation to grind them into mulch. The Scouts are small unmanned aerial vehicles
(UAVs) with self-organizing capabilities to explore and supervise wide forestry areas, as well
as aiding the Ranger in its navigation and perception capabilities. For instance, Scouts can
make more reliable and precise the Ranger’s localization within the field and augment the
Ranger’s perception capabilities with their airborne view of the operating area.

Figure 1: Hlustration of the heterogeneous multi-robot system deployment in the SEMFIRE
project: 1) the Ranger, a large-sized powerful tracked mobile mulcher; 2) a Scout a small
assistive flying robot and member of a fleet of such robots, that can help in exploring and
supervising wide forestry areas and aid in the Ranger’s navigation capabilities. Figure
reproduced from [16].

In the beginning of a mission in a forestry area, the Ranger is moved by an operator
— be it on-site or over the Internet in a remote location — to the target site via remote

control. At this stage of the mission, the Scouts are parked on top of the Ranger and are
thus transported to the target site by that larger platform before being deployed. This
type of heterogeneous multi-robot system is denoted in literature as a marsupial team [15].
After the multi-robot system reaches the target site, the operator issues the command for
the landscaping maintenance mission to initiate. The first stage of the mission is denoted
as reconnaissance and involves using the set of Scouts to collectively explore and map the
surrounding environment with the intent of finding new regions of interest containing forest
debris and defining the area of the operation for the Ranger to start working in its mulching
and forest debris removal task.

Before the Scouts can start exploring and mapping the target site, they have to be
initially deployed by the Ranger within the target area. Since a communication network
infrastructure is not usually present in the forestry environment, the team of Scouts (and the
Ranger) have to rely on a mobile ad hoc network (MANET) created and managed by the own
team from the beginning of its autonomous task [13]. This raises important constraints in
the spatial distribution of the Scouts when initially deployed so that the heterogeneous team
becomes properly connected through the MANET to start the reconnaissance task. Besides
connectivity constraints, the initial deployment of Scouts must avoid areas of no interest,
including obstacles, and should be efficient in scattering the available Scouts throughout the
target site so as to take advantage from space distribution provided by the multi-robot system
[17]. This problem is denoted in literature as the initial deployment problem [14, 17, 15]
and it is the main focus of this deliverable.

This deliverable is organized as follows. After this introduction, the next section (Section
2) surveys literature on the initial deployment problem. Section 3 presents the design of
the initial deployment strategy that is going to be used in the SEMFIRE project. Section
4 presents preliminary work towards the implementation and validation of that strategy,
resorting to a 3D multi-robot simulator. Finally, Section 5 summarizes the conclusions of
current work on the initial deployment problem and points out future actions to be taken
in the project within that topic.

2 Literature review

The initial deployment problem considers the number of robots to be deployed, i.e. the
teamsize, and the choice of the robots’ initial locations. Typically the problem is addressed
through the concept of marsupial teams [45] whereby larger robotic platforms carry a set of
smaller robotic units to be deployed, which are denoted as marsupial robots. The problem
is relevant because a non efficient deployment may greatly jeopardize the mission [66]. Also,
in multi-robot systems whose control policy is ruled by iterative optimization algorithms,
robots’ initial locations correspond to initial estimates of such algorithms which, being of
good quality, can lead to faster convergence [41].

One of the first works that addressed the effect of different initial deployments was
presented in [12]. The authors evaluated their coverage algorithm using both centralized
and random initial deployments and concluded that the algorithm convergence was slower
using a random initial deployment but tends to lead to better overall coverage for sparse
topologies. Minimalist requirements on the robotic hardware, namely knowledge of the
number of wireless links and bumper sensors for collision avoidance, are assumed. Most
works in the literature present a random initial deployment in which robots are scattered
[35, 25].

In [35], a three-dimensional (3D) deployment strategy was explored. The authors did
focus on a deployment strategy in which the initial distribution of all robots is arbitrary
and their positions are distinct. The main difference with other works resides in the fact
that robots autonomously move in a 3D space (e.g., coordinated formation flight and re-
configuration of unmanned aerial vehicles [27]) instead of a planar scenario. Therefore, the
authors provide a coverage and connectivity strategy using a self-configuration process to

enable robots to form a 3D tetrahedron shape. In terms of sensing and communication
capabilities, robots do not share any common coordinate system, and do not retain any
memory of past actions. They can detect the positions of other robots only within their
limited sensing range. In addition, each robot does not communicate explicitly with other
robots. Despite the positive results inherent to a random deployment, in real situations,
it is necessary to ensure several constraints of the system. For instance, if the MANET
supports multi-hop connectivity, these constraints may significantly increase the complexity
of the random distribution since it would depend not only on the communication constraints
but also on the number of robots and their own position. Moreover, a random deployment
may lead to unbalanced distributions, therefore increasing the number of needed robots and
energy throughout the scenario.

In [47], the authors described an approach for deployment of a swarm of heterogeneous
autonomous vehicles based on descriptor functions. Similarly to the work presented in [14],
each robot is treated as an agent of the network in which repulsive forces are computed as a
function of the distance between agents, to spread the network throughout the environment.
In the simulation experiments conducted, it was simply assumed that agents are capable
of performing the area coverage task that is assigned to them and no sensing details were
provided. The authors chose an initial deployment in which robots started from a compact
configuration. Although this kind of initial deployment strategy works well when the main
purpose is to spread the robots within area coverage scenarios, no other deployment strategy
was taken into consideration by the authors. Also, despite being similar to the deployment
of military units, it requires for exploring robots to find energy-efficient paths to avoid
jeopardizing the success of the mission.

In [25], the authors presented a strategy to assign starting points and orientations of
robots within circles of different radius around a prey. Hence, using a team of 16 robots, the
authors assign 16 different positions and 4 different orientations which are randomly assigned
at each trial. The robots used are reconfigurable, being equipped with infrared sensors, a
camera, and grippers, which enable them to form chains of swarm robots through the use
of local communication. Despite the apparent advantages of this deployment strategy in
this context, no other strategies were evaluated, thus being hard to predict if the number of
unsuccessful trials is somehow related with the initial deployment of robots.

Several works have focused on marsupial teams where robots are deployed in a unique
and compact unloading location [18, 30, 66, 47]. For instance, in [66], the authors address
a multi-robot coverage task and deal with the problem of determining the number and size
of robot groups that need to be unloaded from a carrier, and the initial robot locations.
A solution that can cover the deployment area within the maximum coverage time allowed
is iteratively determined by varying the number and sizes of groups based on heuristics.
In order to compute their algorithm, the authors assume that the density of obstacles is
available and simulations modeling PPRK and Pioneer-3DX robots with little communica-
tion requirements are assumed. In addition, besides only considering a scanline deployment
strategy, the authors also assume to have a unique unloading location for the whole team
of robots. In other words, the carrier robot transports the smaller robots into the field and
the latter robots need to autonomously move from the unloading location to their individual
starting locations.

Human-marsupial robot teams for urban search and rescue were firstly studied by Mur-
phy et al. [46, 45] The team members were divided in three roles: Human, Dispensing Agent
(a.k.a., “mother”), and Passenger Agent (a.k.a., “daughter”), similarly to kangaroo societies.
The mother robot provides not only transportation to the daughters, but also power (a.k.a.,
“food”) and help. The latter refers to communicating suggestions, warnings, or to rescue
the daughters, which are responsible for exploring remote locations and are equipped with a
camera, a microphone, two headlights, and a video transmitter to send images directly to the
human. The role of the human rescuers is to supply decision-making capabilities, remotely
speak with victims, and collect information about their state, number of victims, location,

and presence of hazards, like gas leaks. Heuristics were proposed for the deployment of
micro-rovers.

In [52], the authors divided the population of real robots into two different types of
platforms: rangers and scouts. The rangers consisted of large platforms used to transport
the scouts over distances of several kilometers and deploy the scouts rapidly over a large
area. The scouts consisted of small and expendable robotic platforms with cylindrical shape,
able to roll and jump over obstacles, and were used to sense the environment, act on their
sensing, and report their findings. They were endowed with magnetometers and tiltometers,
a CMOS camera, a passive infrared sensor, a microphone, a vibration sensor, a gas sensor,
audio transmitters,/receivers, and are able to receive remote commands. The authors did not
focus on the cooperation among robots. Also, the deployment strategy was accomplished
through a launcher system equipped on the ranger that was able to throw the scouts up to
a range of 30 m. However, in most cooperative applications in unknown and unstructured
scenarios (e.g., forestry exploration), this would require robots to be able to measure the
relative distance between themselves or to be equipped with global localization systems (e.g.,
GPS) to allow an efficient processing of the exchanged information.

Howard et al. [30] proposed a strategy whereby the exploring robots deploy themselves
in the unknown environment in an incremental way and assure line-of-sight contact with
teammates. In their strategy, no carrier robots are considered. Robots have the ultimate
goal of mapping the environment while using teammates as landmarks. A greedy deployment
algorithm is presented, which aims at maximizing the coverage area by exploring robots.
The work has been tested using four Pioneer 2DX mobile robots equipped with Sick laser
rangefinders. Other works, like [53] and [9], also follow self-deployment strategies for military,
search and rescue and exploration missions.

Similarly to [52], Couceiro et al. [14, 17, 15] handles the initial deployment problem
hierarchically by considering a heterogeneous multi-robot system comprising rangers and
scouts. However, in contrast, they make use of a marsupial multi-robot system [45] wherein
each ranger handles the initial deployment of scouts in a distributed and autonomous fash-
ion. The ranger successively deploys the scouts, instructing them of their initial pose while
maintaining a maximum communication range between scouts, thus guaranteeing the full
connectivity of the MANET. Hence, each scout is both an exploring agent and a mobile
node of a MANET that performs packet forwarding using multi-hop communication. In
[14], the initial location of a scout is chosen randomly within a circumference with radius
equal to the maximum communication range between two nodes of the MANET, centred in
the previous scout’s location, but ensuring that the chosen location did not lie on an obstacle.
This randomized choice may cause an unbalanced deployment, which increases the number
of scouts needed to cover an area. To overcome this shortcoming, the authors proposed
an alternative initial deployment strategy [13] whereby the scouts are spatially distributed
accordingly with a Spiral of Theodorus [24], a.k.a. square root spiral [26]. In [17, 15], the
strategy was further refined by proposing the Extended Spiral of Theodorus (EST), which
does not have a fixed central point as in [13]. Instead, the central point will vary over time
depending on the scouts previously deployed, i.e., the number of scouts already deployed
and the distance between successive scouts. In this extended version, the strategy takes into
consideration the fact that the signal propagation may vary throughout the environment
due to signal fading in obstacles. Extensive simulation experiments revealed that the merits
of the EST strategy compared with the randomized initial deployment. The strategy was
also validated in real experiments involving 3 rangers deploying 5 scouts each in a 200 sq.
m planar area.

More recently, the strategy proposed in [13] for planar environments was extended to 3D
scenarios, more precisely to 3D exploration with unmanned underwater vehicles, by adding
another dimension to the Spiral of Theodorus, thus creating a helix [23]. Since the unknown
underwater scenario is usually less deep than wide or long, the helix travels from the surface
to the seabed. The angle formed by the helix with the horizontal plane can be adjusted to

the depth of the scenario and the number of swarm members. This 3D strategy was tested
in a simulation environment created with Gazebo.

Metiaf et al. proposed a modification of particle swarm optimization to move the sensors
of a wireless sensor network from random initial positions to a set of locations provided
by the optimization algorithm [42]. The algorithm aims at optimizing coverage of the area
while minimizing energy consumption and avoiding obstacles.

In [59], the authors propose two low-complexity algorithms for the joint transmit power
and UAV trajectory design in the context of a UAV team-enabled network. This problem
has similarities with the aforementioned initial deployment problem of a set of exploring
scouts.

3 Initial deployment strategy

The initial deployment strategy adopted in the SEMFIRE project for the marsupial team
comprising a Ranger and a team of Scouts is based on the Extended Spiral of Theodorus
(EST) previously developed by some of the project team members to be used in planar
environments [17, 15], with the necessary adaptations to the 3D forestry scenario of the
project that will be presented in this section.

The EST follows the geometrical arrangement depicted in Fig. 2 wherein distance d is
not necessarily constant. In the simplest case, this distance is a function of the maximum
communication range in line-of-sight which could be assumed constant in an area not con-
taining obstacles. However, in the presence of obstacles (e.g. trees, shrubs, etc.) the signal
propagation model becomes much more complex and the maximum communication range
will vary accordingly with the density and type of obstacles. Therefore, the arrangement
depicted in Fig. 2, though being useful to understand the essence of the strategy, may be too
simplistic for the forestry scenario if d varies throughout the area. In this case, the Spiral
of Theodorus will not have a fixed central point as pointed out in [15], being denoted as the
Eztended Spiral of Theodorus (i.e. EST). The reader is referred to [17, 15] for details about
the mathematical formulation of the EST.

Figure 2: Extended Spiral of Theodorus. Figure reproduced from [17].

As mentioned in Sec. 1, the Ranger is a large-sized tracked robotic mulcher (see Fig. 3)
that carries the Scouts on top in the beginning of the mission, before deploying them in
the target area for the reconnaissance task. The Scouts are UAVs of the quadrotor (a.k.a.
quadcopter) type, thus being able to take off and land vertically and hovering in the air.

Before the mission starts, a given nominal working altitude, h,,, is selected for the Scouts,
which must be within the physical limitations of the aerial platforms, including the maximum
communication range w.r.t. ground, should fit the regulations for the use of UAVs and, most
importantly, should optimize the airborne perspective of the area according with the range
and resolution of sensors on board each Scout. The EST is planar and computed onto a

Figure 3: The Ranger.

horizontal plane located at the height h,. The Scouts are deployed in locations indicated
by the EST, which assure the connectivity of the MANET and the avoidance of obstacles,
namely crests of hills and trees canopy. From an algorithmic point of view, these types of
artifacts are just obstacles, as in [15], but they have to be detected not only by the Ranger
based on its estimated traversability [38], but also by the Scouts, after taking off, to avoid and
negotiate aerial obstacles. This means that the Ranger computes an initial estimate of the
EST before the take off of any Scout, which is based solely on the available information about
traversability on the ground around its initial position. During the successive deployment
of Scouts, the EST is adjusted and updated, being recomputed to satisfy the constraints
found by the Scouts during their flight and to be compliant with the traversability map
incrementally built and updated by the Ranger [38].

Another important difference compared with the original EST method proposed in [17,
15] is that Scouts take off from the Ranger (and eventually fly from that place), rather than
just being “unloaded” in the place by the Ranger as in the deployment of terrestrial Scouts
[15]. Moreover, the take off may happen not necessarily at the projection on the ground of
the intended position for the Scout, so that the initial deployment can be faster, as described
below.

When the Ranger arrives the target area (with the Scouts parked on top of it), which
means that it is at the projection on the ground of the first position indicated by the EST,
the initial deployment of Scouts begins according with the following procedure:

1. The Ranger issues the command for taking off of the first Scout to initiate. The first
Scout takes off and tries to place itself over the Ranger at altitude h,,, or as close as
possible to that position (also at altitude h,,) if some tree canopy prevents that exact
position. The Scout remains hovering at the acquired position. The Ranger updates
the EST based on constraints found during the flight of the first Scout deployed.

2. The Ranger starts moving on the ground towards the projection on the ground of the
location prescribed to the second Scout and keeps updating its navigation map and

estimating traversability [38]. During the deployment of the second Scout, and also
of the remaining Scouts, the projection on the ground of the locations prescribed for
the Scouts by the current EST are used by the Ranger as navigation waypoints. As
the Ranger is much slower than Scouts, the next Scout (e.g. the second Scout) is
likely to receive the take off command before the Ranger reaches the corresponding
position on the ground to the prescribed position for that Scout. This makes the Scouts
deployment faster. Even so, the Ranger keeps moving throughout those waypoints in
order to make shorter the distance between the take off location and the hovering
position of the Scouts that were not deployed yet.

3. The Ranger issues the command for taking off of the second Scout to initiate. The
second Scout takes off and flies towards its prescribed position in the EST at altitude
hyn, or as close as possible to that position (also at altitude h,) if some tree canopy
prevents that exact final position, or if the minimum communication signal strength
(w.r.t. the previous Scout, i.e. the preceding node of the MANET) cannot be satisfied
due to signal fading. The Scout remains hovering at the acquired position. The
Ranger updates the EST based on constraints found during the flight of the second
Scout deployed.

4. The previous step is repeated until all Scouts take off and are deployed in the target
area.

5. While the ranger keeps updating the traversability map [38] and reaches successively
the waypoints, the EST is iteratively updated which means that the position acquired
by a Scout already deployed may change; e.g. the Ranger may find unreachable
a position where a Scout is already hovering. In this case, the Ranger instructs that
Scout to reposition itself, and eventually instructs the Scouts deployed after that Scout
to also reposition themselves, as the position of each Scout depends on the position of
previously deployed Scouts in the EST strategy.

In the end of the initial deployment process, the Ranger will have confirmed that all
positions where Scouts are deployed and hovering are traversable on the ground. All Scouts
are hovering in locations that optimize the coverage of the target based on the EST strategy
while, at the same time, assure the MANET connectivity, avoid places of no interest that
are unreachable by the Ranger, and avoid aerial obstacles created by trees canopy. The
Ranger does not need necessarily to navigate to and reach every waypoint, because it may
sense traversability at a distance using its sensors and can also receive percepts from the
Scouts hovering in the air.

The heterogeneous team is then ready to start the reconnaissance task so as to map the
vegetation within the target area, with data acquired on the ground and from the air, and
identify regions to be cut and cleared by the Ranger.

4 Fault-Tolerant Formation Control, Collision and Ob-
stacle Avoidance Under Connectivity Constraints

4.1 The MRS-UAV system in the context of the SEMFIRE project

Experiments with teams of robots, whether aerial, underwater or ground robots, in the
physical world often represent a challenging task due to the complexity involved. One
has to make sure that the robot hardware configuration, the software integration and the
interaction with the environment is thoroughly tested so that the deployment of robot teams
runs smoothly. This usually requires long preparation time for experiments and takes the
focus away from what is essential, i.e. the cooperative task performed by the robots.

With proper simulation tools, roboticists can primarily focus on the specific challenges
within robotic collaborative missions, run exhaustive tests in different scenarios and with

desired reference full-state reference w, .).\ ;;ian{ I

[P Xa T, ;. Embedded autopilot T
Mission & | 7 demand Reference 100Hz Reference 100Hz | Attitude rate Sk UAV Onboard
navigation tracker controller ; controller actuators sensors
initialization - R o
only xR, o a,
: 100Hz State onboard sensor data

estimator

Figure 4: A diagram of the MRS UAV system architecture [6].

Figure 5: Swarms of multirotor UAVs testing novel flocking algorithms while localized (a)
by a GNSS system, or (b) by onboard sensors only within a forest environment. Figure
reproduced from [6].

different team sizes in a fairly realistic environment, and ultimately execute quicker experi-
ments in the real world by mimicking the setting up of simulated experiments.

The scalability of multi-robot simulators has always been a known issue. Most existing
3D simulators normally fail in modern day computers to keep up the frame rate and the
simulated time versus real time ratio with, even for relatively small teams, e.g. 3 or 4 mobile
robots, having advanced navigation and perception capabilities. Clearly, in order to be able
to simulate at least half a dozen robots under the above mentioned conditions, a balance
between computation load and fidelity /realism is crucial.

Recently, the Multi-Robot Systems group at Czech Technical University (CTU) in Prague
has proposed the MRS UAV simulation framework!, which uses the Robot Operating System
(ROS)? and the Gazebo simulation engine® at his back-end.

According to its authors, the MRS UAV [6] provides a multirotor Unmanned Aerial Vehi-
cle (UAV) control and estimation system for supporting replicable research through realistic
simulations, which can also be extended to real-world experiments. It follows a multi-frame
localization paradigm for estimating the states of a UAV in various frames of reference using
multiple sensors simultaneously. The system enables complex missions in GNSS and GNSS-
denied environments, including outdoor-indoor transitions and the execution of redundant
estimators for backing up unreliable localization sources. Two feedback control designs are
presented (cf. Fig. 4): one for precise and aggressive maneuvers, and the other for stable
and smooth flight with a noisy state estimate. The proposed control and estimation pipeline
is constructed without using the Euler/TaitBryan angle representation of orientation in 3D.
Instead, it relies on rotation matrices and a novel heading-based convention to represent the
one free rotational degree-of-freedom in 3D of a standard multirotor helicopter.

MRS UAV provides an actively maintained and well-documented open-source imple-

Thttps://ctu-mrs.github.io/
2https://wiki.ros.org/
Shttp://gazebosim.org/

Table 1: Specifications for SEMFIRE UAV and respective sensor setup.

Feature
Drone type
Camera unit

CPU unit
Flight
controller
GPS unit
0s

Value

Drovni pla’[formZ

Intel Realsense camera
d435i

Intel NUC

Pixhawk Cube 2.1

GPS/RTK
Ubuntu 18.04

Figure 6: MRS UAV system in simulated scenario designed and implemented for the
SEMFIRE project.

Table 2: PC configuration used for the experiments.

Feature Value
Processor (CPU): Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
Graphics (GPU) HD Graphics 630

GeForce GTX 1060 6GB (not used)

Operating System: | Ubuntu 18.04.5 LTS

Memory: 48 GB, DIMM DDR4 2400 MHz

Storage: 1TB, WDC WD 10EZEX-75W

Network Adapter: | Realtek Semiconductor Co., Ltd. RTL8111/8168/8411 PCl Express Gigabit Ethernet Controller
Motherboard: ASUS Prime B250 Plus

mentation, including realistic simulation of UAVs, sensors, and localization systems. The
proposed system is the product of years of applied cutting-edge research on multi-robot sys-
tems, aerial swarms, aerial manipulation, motion planning, and remote sensing, and their
use in various branches of autonomous robotics, including forestry (see Fig. 5). The sys-
tem has been shaped by real-world system deployment, and utilized prestigious UAVs and
robotics competitions and challenges. The proposed architecture allows reliable deployment
of UAVs outside laboratory conditions using only onboard sensors.

Our preliminary study showed that the MRS UAV simulation framework provides the
needed balance between computation load and fidelity /realism. Therefore, ongoing work
within the SEMFIRE project has been focused in setting up the system for simulation
of Scouts behavior to implement the initial deployment, following the strategy referred in
Section 3, and additional behaviors such as regrouping, formation control, and more.

Besides the setup of simulation experiments as illustrated in Fig. 6, we have been work-
ing towards incorporating the Scouts multimodal sensors in the simulation environment.
Namely, we have incorporated the Intel Realsense depth camera, and simulated the acqui-
sition of aerial point clouds with the Scouts to be used for 3D mapping and path planning
(see Table 1). The MRS-UAV tutorial can be found in the internal SEMFIRE technical
report TR-SEMFIRE-2-vA [3].

4.2 Tests and parameter calibration for a single agent using MRS-
UAV

4.2.1 Testing scenario definition

Prior to being able to use the MRS-UAV system to simulate coordinated operations with
multiple UAVs, this system needed to be thoroughly tested and its parameters calibrated
for the operation of a single UAV.

A testing scenario was defined using Gazebo in which the UAV navigated from point
A(0,—4,4) to point B(12,4,4) while avoiding two obstacles located on positions O1(4,0,0)
and O2(8,0,0) (see Fig. 7).

All the experiments are performed on a single PC with the specification listed in Table 2.

4.2.2 Parameter list and evaluation for behaviour calibration

The parameters in Table 3 are going to be modified and evaluated separately. Each param-
eter has a default, minimum, and maximum value. For each experiment, 11 values are going
to be generated and tested within the range of [min — maz| for each parameter (i.e. a test
set of +1 x %_Om”ﬂ with ¢ = [0 — 10]). The priority order for each parameter is also shown
in Table 3.

The parameters with the order of 1 to 4 are related to Search tree generation. 5 to 9
are used in the cost function that is used for best-path selection. As it is observed in the

10

Figure 7: Proposed single UAV testing and calibration scenario for MRS-UAYV in simulation.
Gray squares : Obstacles (width=1m, depth=1m, height=10m); Green line : Desired path;
Drone safety volume : width=0.696m , depth=0.696m , height=0.245m.

Table 3: Drone parameters for MRS-UAV.

Order Name Description default | min max
1 tree_node_distance Distance between nodes 2 0.5 15
2 children_per_node Branching factor of the search tree 8 1 100
3 e h e | Number of nodes expanded in 40 1 200
complete tree
)) smoothing radius for obstacle cost in | 40 5 75
4 smoothing_margin_degrees)
cost histogram
5 tree_heuristic_weight Weight for the tree heuristic cost 35.0 0 50.0
Approximate distance from obstacles 8.5 0.5 30.0
6 obstacle_cost_param (m) when the obstacle distance term
dominates the cost function
Cost function weight for constant 3 1 20.0
7 yaw_cost_param .
heading
. Cost function weight for goal-oriented = 25.0 5 30.0
8 pitch_cost_param .
behavior
. Cost function weight for path 6000 0 50000
9 velocity_cost_param
smoothness
. maximum age of a remembered data 20 0 100
10 max_point_age_s R
point
minimum number of points in one area 1 1 100
11 min_num_points_per_cell to be kept if lower they are discarded
as noise
. response speed of the smoothing 10 0 30
12 smoothing_speed_xy system in xy (set to 0 to disable
) response speed of the smoothing 3 0 30
13 e ELEE system in z (set to 0 to disable)
Data points farther away will be 15.0 5 20
14 max_sensor_range .
discarded

11

Minimum distance = 0.99m

Safe distance threshold = 0.5m

<
<

Figure 8: Safe distance and minimum distance threshold definition.

preliminary test, modifying these results in diverse output for the Search tree generation
task. (i.e. result in wide/narrow search tree generation)

10 and 11 are related to local map generation. The parameter max_point_age_s in-
dicates that obstacle points older than this number are deleted from the local map. The
parameter min_num_points_per_cell discards points that are considered as noise in local
map generation. So, changing these values would result in different Search tree generation.

12 and 13 are related to smooth trajectory generation. 14 is related to the maximum
distance for depth point cloud data to be considered in local map generation. Modifying
this parameter, as well as tree_node_distance, results in a deeper search tree and having
a more reactive attitude for drone.

As an assumption for the experiments, the safety minimum distance to obstacle is con-
sidered as 0.5m which is used as a threshold to prevent collision with obstacles (Fig. 8). The
following metrics will be used to evaluate parameter calibration quality:

1. Traversed path distance (meters). This metric is the overall traversed distance of the
drone which starts at A, and ends at B. The measurement unit used for this metric
is “meter”. The drone will arrive at B while there is at least 5cm around B, in other
words Hdroneposition - position” < dem.

2. Flying time from A to B (seconds).

3. Minimum distance (meters). This metric is defined as the minimum distance between
the drone position and obstacles (O1,O3) while navigating from A to B. According
to the safety minimum distance threshold and according to the drone max exten-
sion size (diameter) which is 0.98m, the minimum distance to the obstacles should be
0.540.98/2 = 0.99m (see Fig. 8). The minimum distance is calculating from the geo-
metric centre of the robot with the corners of the obstacles. Therefore, the considered
threshold should be more than 0.99m which is considered 1m for the experiments. Any
parameter modification that results in lower than this threshold is not valid.

4. Tree calculation time (milliseconds). This metric is the average generation time of the
search tree generation while traversing.

5. CPU load (percentage). This metric is the average local planner node CPU utilization
while traversing.

6. RAM usage (MB). This metric is the average local planner node memory usage while
traversing.

The results in each experiment are compared to the result of the baseline experiment
(Experiment #1). In every experiment, the best possible values are highlighted (when

12

relevant) in respective tables to be considered as the best value or considered as a new test
set. A single highlighted row implies the best possible value for the respective parameter,
and a set of highlighted rows implies a new test set for the respective parameter, and no
highlighting rows implies that the last test set should be considered again.

4.2.3 Testing experiments

Experiment #1 -

In the baseline experiment, none of the parameters are modified to observe the perfor-
mance of the planner with default values. Fig. 9 presents the overall traversed path from
point A to point B for 10 iterations. Overall results for 10 iterations of default parameters
value are presented in Table 4.

Experiment #2 -

In this experiment, the tree_node_distance parameter is modified. The default value
of this parameter is 2. Fig. 10 presents the overall traversed path from point A to point B
for 10 iterations per 11 values. Overall results for the 11 parameter values are presented in
Table 5 and Fig. 11.

Experiment #3 -

In this experiment, the children_per_node parameter is modified. The default value
of this parameter is 8. Fig. 12 presents the overall traversed path from point A to point B
for 10 iterations per 11 values. Overall results for the 11 parameter values are presented in
Table 6 and Fig. 13.

Experiment #4 -

In this experiment, the n_expanded_nodes parameter is modified. The default value of
this parameter is 40. Fig. 14 presents the overall traversed path from point A to point B
for 10 iterations per 11 values. Overall results for the 11 parameter values are presented in
Table 7 and Fig. 15.

Experiment #5 -

In this experiment, the smoothing_margin_degrees parameter is modified. The default
value of this parameter is 40. Fig. 16 presents the overall traversed path from point A
to point B for 10 iterations per 11 values. Overall results for the 11 parameter values are
presented in Table 8 and Fig. 17.

Experiment #6 -
In this experiment, the tree_heuristic_weight parameter is modified. The default
value of this parameter is 35. Fig. 18 presents the overall traversed path from point A

to point B for 10 iterations per 11 values. Overall results for the 11 parameter values are
presented in Table 9 and Fig. 19.

13

Figure 9: Traversed paths for the 10 trials of Experiment #1.

Table 4: Results for Experiment #1.

Test Traversed Flying Minimum Tree CcPU Ram

Value path time (s) distance Caleulation load usage
{m) distance {m) time (ms) (%) (MB)

(m)

1 18.329 35.938 2.007 27.448 25482 62.719
2 18.516 38.283 2.014 22.14 22913 63.66
3 18.615 36.406 2.088 23.456 24903 58.889
4 18.197 34.262 1.913 22.543 23.852 61.004
5 17.995 33.056 1.838 20.717 22.397 58.459
6 18.287 34.28 2.001 24.333 25.592 60.516
7 18.145 34.754 1.871 20.555 26.395 58.643
8 18.497 34.313 1.986 21.634 24995 60.512
9 18.367 31.505 2.165 22.355 27.074 56.135
10 18.515 35.874 2.266 22.287 25.041 58.555

14

Figure 10: Traversed paths for Experiment #2.

Table 5: Results for Experiment #2.

Test Traversed Flying Minimum Calculation cPU Ram
Value path time (s] distance (m) time (ms) load usage
{m) distance (m) (%) {MB)
0.5 18.465 34.322 191 13.659 22.825 62.422
1.95 18.109 33.538 2.039 21.15 24401 @ 61.494
3.4 18.497 34.856 2.179 21.235 23.869 @ 62.584
4.85 19.138 36.079 2.783 20.426 24.02 62.805
6.3 19.387 35.861 2.882 22.906 24433 60.188
7.75 19.641 36.539 2.874 20.108 23.646 @ 62.794
9.2 20.319 36.241 3.141 8.544 20.331 62.986
10.6 20.19 37.052 3.391 6.729 20.124 @ £1.148

5
121 20.274 37.535 3.335 6.654 19.711 61.248
135 20.303 36.749 3.335 5.792 19.808 61.6

5

15 19.849 35.036 3.194 3.548 20.261 @ 60.515

15

g 275

2.25

2.00

Traversed path distance

05 195 34 485 63 115 92 1065) 1355 350

Minimum distance

05 195 34 489 (%] 11% 92 “,,55 EVRY .,_355 150

Cpu Usage

]

05 195 34 485 63 915 92 4085 1) 355 150

Figure 11: Result plots Experiment #2.

40

38

36

second

32

25

20

15

millisecond

10

58

56

Flying time

05

195

34

485

e3 115 92

Tree Calculation time

1065

12t

1355

05 195 34 485 63 115 92 \0-"5 LVRY \35& 150
Ram Usage
o ° °
- o
o 4
o
05 195 34 485 63 975 92 1985 123 1355 450

Figure 12: Traversed paths for Experiment #3.

16

32

28

26

24

22

20

Table 6: Results for Experiment #3.

Test Traversed Flying Minimum Calculation CPU Ram
Value path time (s) distance (in) time (ims) load usage
distance (m) (%) (MB)
1 18.381 34.516 1.937 7.374 20.378 61.237
10.9 18.58 34.875 2.057 21.378 24.169 63.202
20.8 18.536 34.696 2.12 22.915 26.137 61.627
30.7 18.732 35.36 2.194 22.628 25896 59.987
40.6 19.139 36.463 2.371 23.702 26.254 60.773
50.5 19.195 38.359 2.352 25.29 2545 62791
60.4 18.942 35.234 2.297 25.725 26.305 62.537
70.3 19.169 36.472 2.339 28.317 28.348 60.075
80.2 19.237 37.108 2.425 28.75 27.895 62.06
90.1 19.369 38.371 2.327 30.098 27.842 61.153
100 18.926 36.658 2.325 31.487 28091 60.762
Traversed path distance Flying time
§45
10 109 208 307 408 05 04 103 802 903 4000 10 109 208 207 408 05 g4 103 g2 g0l 4000
Minimum distance Tree Calculation time
19 108 08 307 408 505 A 103 g0l o0 1000 ’ 10 w02 208 07 a6 05 4 103 @02 9) 4000
Cpu Usage Ram Usage
10 102 208 307 40 505 g04 103 802 90} 1000 B 10 2 208 3T 408 03 g8 702 g2 g0d 400

Figure 13: Result plots Experiment #3.

17

Figure 14: Traversed paths for Experiment #4.

Table 7: Results for Experiment #4.

Test Traversed Flying Minimum Calculation crPU Ram
Value path time (s) distance time (ms) load usage
distance (m) (%) (MB)

(m)

1 19.159 35.461 2.486 0.862 18.453 63.213
20.9 18.352 34.287 2.002 11.996 21.265 62.028
40.8 18.147 33.656 2.024 21.386 25.114 63.468
60.7 18.156 33.656 1.959 29.867 28.36 60.946
80.6 18.43 34316 2.144 37.143 30,511 61.947
100.5 18.285 33.988 2.165 43.655 33.003 62.272
1204 18.307 33.228 2.241 50.751 36.476 61.15
140.3 18.455 33.393 2.278 54.12 37.917 61.99
160.2 18.471 33.228 2.33 58.748 39.637 62.554
180.1 18.513 34.71 2.308 66.98 42.908 62.5
200 18.422 34.832 2.239 70.592 43333 60.109

18

19.50

19.25

19.00

18.75

meter

18.50

18.25

18.00

15

Traversed path distance Flying time

second

]

o

209 a08 g0l g0 4005 1204 1203 1602 1803 9000 10 209 408 &7 g8

1005 1204 1403 402 9g0} 000

Minimum distance Tree Calculation time

1.0

09 08 01 g6 1005 1204 1403 102 1803 000 10 200 403 &7 806

1002 1204 1403 1602 1803 5000

Cpu Usage Ram Usage

MB

10

209 408 g0l g06 4005 1204 4203 4602 1803 4000 10 209 408 @l gb

Figure 15: Result plots Experiment #4.

Figure 16: Traversed paths for Experiment #5.

19

1005 1204 1403 4602 4801 2000

32

30

28

26

24

22

Table 8: Results for Experiment #5.

Test Traversed Flying Minimum Calculation CPU Ram
Value path distance time (s) distance time (ms) load usage
(m) (m) %) (MB)
5 15.287 26.863 0.327 20.241 25951 62.137
12 1593 20.254 0.47 22.125 26.635 62.825
19 16.461 31.086 0.9 20.85 26.216 62.206
26 17.181 31.275 1.305 21.249 25.385 63.039
33 17.436 32.779 1.498 21.245 24913 61.967
40 18.221 34.044 2.058 21.195 25.549 60.805
47 18.961 34.059 2.467 20.809 24.836 62.235
54 19.89 35.625 2.976 21.052 24.563 061.792
61 22.52 39.825 4313 21.768 24.019 61.558
68 24.693 44.392 4.758 20.103 23.237 62.25
75 26.801 45.862 4.829 22.33 22.586 61.749
Traversed path distance Flying time

]

o

second

50 120 190 960

30 400

Minimum distance

410 500 G0 g0 150 50 120 490 260 3130 400 410 50 @0 g0 150

Tree Calculation time

50 120 190 560

30 400

Cpu Usage

410 520 @0 g0 150 50 120 190 260 30 400 410 a0 @0 0 150

o

Ram Usage

50 120 190 260

B0 400

]

o

410 520 @0 80 190 50 120 190 260 330 400 410 a0 @0 g0 50

Figure 17: Result plots Experiment #b5.

20

Figure 18: Traversed paths for Experiment #6.

Table 9: Results for Experiment #6.

Test Traversed Flying Minimum Calculation CPU Ram
Value path distance time (s) distance time (ms) load (%) usage
(m) (m) (MB)
0 18.328 34.366 1.993 22.299
5 18.239 34.132 1.962 21.615
10 18.389 34.899 2.013 22.157
15 18.449 35.496 2.053 22.353
20 18.257 34.747 2.045 22.48
25 18.39 35.154 1.993 21.571
30 18.322 34.552 1.999 22.1
35 18.366 37.635 2.006 21.969
40 18.276 33.072 2.04 22.276
45 18.205 33.168 2.059 21.965
50 18.156 34.59 1.982 21.572

21

19.4

19.2

19.0

18.8

Traversed path distance

Flying time

65

second

= 30

00 50 100 150 200 25.0 300 350 40.0 450 500 00 50 100 150 200 250 30.0 350 400 450 500
test value test value
Minimum distance

meter

24

23

22

21

20

18

Tree Calculation time

28

[
b

Y]
51

millisecond

18

0.0

5.0

10.0

L]

o

Figure 19: Result plots Experiment #6.

22

test value

15.0 20.0 25.0 30.0 350 40.0 450 500 0.0 50 100 150 200 250 30.0 350 40.0 450 50.0
test value

Experiment #7 -

In this experiment, the obstacle_cost_param parameter is modified. The default value
of this parameter is 8.5. Fig. 20 presents the overall traversed path from point A to point
B for 10 iterations per 11 values. Overall results for the 11 parameter values are presented
in Table 10 and Fig. 21.

Experiment #8 -

In this experiment, the yaw_cost_param parameter is modified. The default value of
this parameter is 3. Fig. 22 presents the overall traversed path from point A to point B
for 10 iterations per 11 values. Overall results for the 11 parameter values are presented in
Table 11 and Fig. 23.

Experiment #9 -

In this experiment, the pitch_cost_param parameter is modified. The default value of
this parameter is 25. Fig. 24 presents the overall traversed path from point A to point B
for 10 iterations per 11 values. Overall results for the 11 parameter values are presented in
Table 12 and Fig. 25.

Experiment #10 -

In this experiment, the velocity_cost_param parameter is modified. The default value
of this parameter is 6000. Fig. 26 presents the overall traversed path from point A to point
B for 10 iterations per 11 values. Overall results for the 11 parameter values are presented
in Table 13 and Fig. 27.

Experiment #11 -

In this experiment, the max_point_age_s parameter is modified. The default value of
this parameter is 20. Fig. 28 presents the overall traversed path from point A to point B
for 10 iterations per 11 values. Overall results for the 11 parameter values are presented in
Table 14 and Fig. 29.

Experiment #12 -
In this experiment, the min_num_points_per_cell parameter is modified. The default
value of this parameter is 1. Fig. 30 presents the overall traversed path from point A to

point B for 10 iterations per 11 values. Overall results for the 11 parameter values are
presented in Table 15 and Fig. 31.

Experiment #13 -

In this experiment, the smoothing_speed_xy parameter is modified. The default value
of this parameter is 10. Fig. 32 presents the overall traversed path from point A to point B
for 10 iterations per 11 values. Overall results for the 11 parameter values are presented in
Table 16 and Fig. 33.
Experiment #14 —

In this experiment, the smoothing_speed_z parameter is modified. The default value
of this parameter is 3. Fig. 34 presents the overall traversed path from point A to point B

23

Figure 20: Traversed paths for Experiment #7.

Table 10: Results for Experiment #7.

Test Traversed Flying Minimum Calculation CcPU Ram

Value path time (s) distance time (ms) load usage

distance (m) (m) (%) (MB)
0.5 15.505 26.067 0.699 22.878
3.45 16.674 29.24 1.461 22.585
6.4 17.72 32.006 1.864 21.812
9.35 18.338 35.395 1.991 22.37
12.3 18.129 359 1.798 20.684
15.25 18.185 351 2.003 21.685
18.2 18.213 36.407 1.859 21.888
21.15 18.335 35.096 2.094 21.243
24.1 18.1 35.366 2.013 21.798
27.05 18.075 33.262 1.952 22.069
30 18.203 35.39 1.954 21.621

24

meter

Traversed path distance

[+}

o

05 345 64 035 123 1525 182 2115 24.1 27.05 30.0
test value

Minimum distance

2.254

2.00

1.75 4

1.501

1.254

1.00 1

0.75 4

0.50 1

05 345 64 935 123 1525 18.2 21.15 24.1 27.05 30.0
test value

Flying time

50 °

45

40

second

35

30

25

05 345 64 035 123 1525 182 2115 241 27.05 30.0
test value

Tree Calculation time

26

25

24

23

22

millisecond

21

20

19

18

05 345 64 935 123 1525 18.2 2115 241 27.05 30.0
test value

Figure 21: Result plots Experiment #7.

Figure 22: Traversed paths for Experiment #8.

25

meter

29

28

27

26

25

24

23

22

Table 11: Results for Experiment #8.

Test Traversed Flying Minimum Tree CPU Ram
Value path time (s) distance Calculation load usage
(deg) distance (m) time (ms) (%) (MB)

(m)

1 18.946 34.105 2.329 22.542 24943 61.691
29 18.143 33.923 2.04 22.126 26.331 60.442
4.8 18.091 33.492 1.959 21.563 25.269 63.03
6.7 17.891 32.524 1.797 21.895 24.019 61.858
8.6 17.983 33.117 1.886 22.043 25978 62.134
10.5 17.713 32.578 1.813 23.322 25.553 60.621
124 17.646 31.963 1.689 22.094 25336 61.982
14.3 17.511 31.835 1.652 21.502 24.907 63.106
16.2 17.522 31.267 1.647 22.027 25234 62.218
18.1 17.501 31.587 1.578 22.021 24939 60.781
20 17.458 31.245 1.544 22.232 25.853 62.712

] 28
Cpu Usage Ram Usage

Figure 23: Result plots Experiment #8.

26

Figure 24: Traversed paths for Experiment #9.

Table 12: Results for Experiment #9.

Test Traversed Flying Minimum Tree CPU Ram
Value path fime (s) distance Calculation load usage
(deg) distance (m) time (ms) (%) (MB)

m
5 lg.{S 33.886 1.888 21.262 24934 61.832
7.5 18.122 33.335 1.95 21.197 25.616 61913
10 18.128 33.309 1.937 21.556 24876 61.721
12.5 18.287 34.646 1.98 21.218 25.055 62.482
15 18.156 33.111 1.996 21.608 24.824 62.724
17.5 18.232 33.824 2.026 22.378 25.761 61.22
20 18.173 33.522 1.997 22.63 25.082 60.678
225 18.312 33.855 1.994 22.269 25.856 63.095
25 18.303 34.546 1.987 22.75 25.868 60.885
27.5 18.098 32.959 1.99 21.945 24746 60.394
30 18.191 33.203 2.039 21.988 25435 61.578

27

Traversed path distance Flying time

meter

<] o
37
36
35
]
D
&
3
32
31
15 108 125 350 115 00 ;25 50 ;5 50 50 15 10 125 350 15 200 @25 50 715 w0
Minimum distance Tree Calculation time
28 °
o
26
o
o2 ©
2
g
k]
En
20
o
18
15 100 25 50 115 00 @5 58 715 300 50 15 400 125 150 115 2008 25 50 715 300
Cpu Usage Ram Usage
_ o
8
6
64
26
60
58
° 56 o
o
15 109 425 950 115 200 725 950 15 300 50 15 300 125 180 15 200 225 250 15 300

Figure 25: Result plots Experiment #9.

Figure 26: Traversed paths for Experiment #10.

28

Table 13: Results for Experiment #10.

Test Traversed Flying Minimum Tree CPU Ram
Value path time (s) distance Calculation load usage

distance (m) time (ms) (%) (MB)

(m)

0 18.016 34.226 1.825 20.52 24956 61.524
5000 18.143 33.517 1.969 21.467 24.557 61.864
10000 18.29 32.848 2.048 21.745 25.178 61.26
15000 18.368 34.348 2.025 22.309 24.887 60.986
20000 18.437 34.417 2.118 21.658 24.662 61.62
25000 19.285 33.064 2.251 20.826 24.536 62.978
30000 19.481 34.855 2.455 21.569 24.733 61.061
35000 19.408 35.403 2.379 21.21 25.089 061.682
40000 19.477 33.561 2.467 21.966 24.058 61.779
45000 19.275 35.592 2.381 21.453 25.167 61.22
50000 20.02 34.057 2.736 21.941 25.259 59.785

[}

00

5000© 10009 450002 590000 550000 560000 550000 0000 5000.0 5000

Minimum distance

-]

00

5000 0 40000 o ﬁoen_ﬁ 20000 o 5000 0 30000.0 35000.0 n00°“-° AS“““‘U 500°°'“

Cpu Usage

o

o

00

50000 100002 150002 190000 5000 10000 150000 4000 450000 (5000

millisecond

o

00 50000 10000 15000030000 0000 4000 10000 440000 45000 0000

Tree Calculation time

00 009 10090 150000 100000 150000 40000 60000 410000 460000 430000

Ram Usage

8

o

o

00 50000 10000 150000 10000 15000 10000 15000 460000 450000 5000

Figure 27: Result plots Experiment #10.

29

Figure 28: Traversed paths for Experiment #11.

Table 14: Results for Experiment #11.

Test Traversed Flying Minimum Tree CPU Ram
Value path time (s) distance Calculation load usage

(s) distance (m) time (ms) (%) (MB)

(m

0 19.0)65 49.409 1.811 20.686 22.714 61.77
10 18.101 34.908 1.941 24.731 23.599 60.694
20 18.134 33.453 1.977 22.278 25.794 60.876
30 18.433 34.441 1.985 21.984 24917 62.629
40 18.331 34.217 2.016 22.123 2496 61.103
50 18.088 33.474 2.025 22.534 24.52 61.394
60 18.109 33.923 1.982 21.361 24955 62.368
70 18.382 34.768 2.004 21.487 24.638 61.593
80 18.195 33.749 1.982 22.737 25321 61.926
90 18.165 34.105 2.023 22.502 25.533 60.271
100 18.216 34.908 1.933 20.864 23877 62.287

30

Traversed path distance Flying time

o

55

50

35

o

30 o

00 100 00 300 408 00 &0 100 g0 908 4000 00 100 200 200 409 <00 0 100 g0 g00 400

Minimum distance Tree Calculation time

a5 o
°

40

35

millisecond
w
&

N
&
o

20 8

o

00 100 200 300 400 500 0 100 g0 00 400 00 100 200 200 400 <00 g0 00 g0 g00 4008

Cpu Usage Ram Usage

28

26

24

22

20

MB

00 100 9200 300 400 500 &0 700 g0 900 000 00 100 200 200 400 <0 0 1700 g0 g0 00

Figure 29: Result plots Experiment #11.

Figure 30: Traversed paths for Experiment #12.

31

Table 15: Results for Experiment #12.

Test Traversed Flying Minimum Tree CPU Ram
Value path time (s) distance Calculation load usage
distance (m) time (ms) (%) (MB)

(m)

1 18.179 33.791 2.008 21.424 25.423 61.83
10.9 18.153 33.877 2.08 21.929 24.655 060.944
20.8 18.2 33.575 2.048 21.65 25.534 61.981
30.7 18.261 34.391 2.108 21.599 25.182 61.621
40.6 18.261 34.074 2.063 23311 26.502 61.205
50.5 18.243 34.945 2.079 21.79 25.176 61.816
60.4 18.225 34.232 2.051 22.201 25.334 61.049
70.3 18.251 34.453 2.003 20.76 25.225 59.958
80.2 18.18 33.697 1.992 21.352 24.522 62.485
90.1 17.918 32.58 1.976 21.7 25.203 62.972
100 16.904 29.488 1.324 20.94 25.8 64.126

o
o

<}

10

102 08

Minimum distance

Tree Calculation time

307 408 05 g4 103 g2 g0l 1000 10 102 208 207 a0® 505 @A 103 g2

50

1000

millisecond

20
18

10 109 08 307 408 505 604 103 802 g0} 4000 10 102 208 207 408 505 A 103 802 90} 4000

Cpu Usage Ram Usage
© 68
66
64
=62
60
58
56 ° °
10 109 208 307 406 505 oA 103 g2 o) 4008 19 309 208 307 408 505 A 703 g2 g0d 4000

Figure 31: Result plots Experiment #12.

32

Figure 32: Traversed paths for Experiment #13.

Table 16: Results for Experiment #13.

Test Traversed Flying Minimum Tree CPU Ram
Value path time (s) distance Calculation load usage

distance (m) time (ms) (%) (MB)

m,

0 18(.3)37 32.891 1.578 20.913 24.135 61.894
3 19.001 36.124 2.553 22.025 24204 61.413
6 18.376 35.398 2.26 23.031 26.247 61.11
9 18.272 34.763 2 21.642 25132 62.711
12 18.211 34.093 1.973 21.763 24.625 62.066
15 18.127 33.665 1.863 22.06 25.504 62.616
18 18.116 33.449 1.881 21.732 25.117 60.756
21 17.98 32.459 1.813 21.544 25431 62.739
24 18.012 33.554 1.827 22.093 25.48 61.525
27 18.052 34.719 1.779 21.628 24.956 62.091
30 17.995 33.63 1.744 21.505 25.73 61.908

33

19.25

19.00

18.75

18.50

meter

18.25

18.00

17.75

17.50

meter

28

27

26

24

23

2

Traversed path distance

00 30 60 90 120 150 180 20 w0 510 300

Minimum distance

00 30 60 90 120 450 480 0 40 10 200

Cpu Usage

40

28

26

24

millisecond

66

62

MB

60

Flying time
o
o
o
o
o
o
00 30 60 90 120 150 180 0 40 210 300
Tree Calculation time
o
<]
00 30 60 90 20 450 480 0 20 20 30

Ram Usage

00

60

2.0

120 150 180 A0

Figure 33: Result plots Experiment #13.

34

00

10

for 10 iterations per 11 values. Overall results for the 11 parameter values are presented in
Table 17 and Fig. 35.

Experiment #15 -

In this experiment, the max_sensor_range parameter is modified. The default value of
this parameter is 3. Fig. 36 presents the overall traversed path from point A to point B
for 10 iterations per 11 values. Overall results for the 11 parameter values are presented in
Table 18 and Fig. 37.

4.2.4 Final parameter combination experiments and parameter set choice

According to the results of the follow-up experiments on parameter combinations, in line
with our safety and performance requirements, the final choice for the operational parameter
set is presented in Table 19.

4.3 Formation control strategies —implementation using MRS-UAV
4.3.1 Introduction

In most applications, it is expected autonomous aerial swarms be more capable than a single-
vehicle due to offering significantly enhanced adaptability, scalability, and maintainability,
reliability, survivability, and fault-tolerance [11]. In this section, advances in aerial swarm
robotics are briefly reviewed. Aerial robots swarming is supposed to autonomously operate
in a complex 3D world including dynamic obstacles that is getting increasingly crowded with
drones and other locomotives. The success of aerial swarms flying in such an environment is
predicated on the distributed and synergistic capabilities of individual controlling as well as
collective motions of UAVs with limited resources for on-board computation power. In this
application, three factors should be considered to use as an aerial swarm solution. i) obstacle
avoidance, ii) collision avoidance, and iii) formation control. A swarm generally refers to
a group of similar agents that exhibits emergent behaviour arising from local interactions
among the agents. Local interaction can be competitive or cooperative, which typically
requires a large group of agents (10 to 100 or more). A formation consists mostly of coop-
erative interactions, and the relationship between the states of the agents is a well-defined
form for goals (e.g., triangle, square, circle, hexagon, etc.) [11].
Authors in [51] have classified formation control problems as follows:

e Formation producing problems: The agents’ objective is to achieve a predefined de-
sired formation shape. In the literature, these problems have been addressed through
matrix theory-based approach, Lyapunov based approach, graph rigidity approach,
and receding horizon.

e Formation tracking problems: Agents’ reference trajectories are defined, and they are
supposed to be tracked by the agents. These problems have been studied through
matrix theory-based approach, potential function-based approach, Lyapunov based
approach, and some other approaches.

According to fundamental control ideas in [10, 55], formation control schemes are gener-
ally classified into three categories as follows.

e Leader-follower approach: At least one agent plays the role of a leader, and the rest of
the agents are designated as followers. The followers track the position of the leader
with some prescribed offsets while the leader tracks its desired trajectory. The main
challenges in this approach are the number of leaders to be chosen and the nomination
criteria for leaders.

35

Figure 34: Traversed paths for Experiment #14.

Table 17: Results for Experiment #14.

Test Traversed Flying Minimum Tree CPU Ram
Value path time (s) distance Calculation load usage
distance (m) time (ms) (%) (MB)

(m)

1 18.22 34.24 2.014 23.492 25.837 61.891
3.9 18.188 33.547 1.989 22.32 26.097 62.197
6.8 18.216 33.481 2.058 21.356 24.878 61.551
9.7 18.327 34.494 2.018 21.263 25.042 62319
12.6 18.247 33.196 2.018 21.718 24.787 60.309
15.5 18.16 33.499 1.973 21.379 25.137 61.273
18.4 18.201 33.766 1.977 22.317 25321 ©61.089
213 18.398 34.064 1.994 22.616 25.542 61.496
24.2 18.269 33.834 2.025 21.622 25.259 62.249
27.1 18.246 34.922 2.02 21.844 24.115 60.857
30 18.18 33.275 2.019 21.907 25.709

36

61.314

Traversed path distance Flying time

o ° .
) 38
° °
36
o M
2
§
%
32
30
28
[o
10 39 68 ol 126 455 484 N3 a2 13 300 10 39 8 ol 126 155 184 N3 a2 11 200
Minimum distance Tree Calculation time
<]
28
°
2
°
52
z
22
20
o ©
<] 18 ° o
10 39 68 ol 126 455 4% M3 a2 411 300 10 39 8 ol 126 155 184 3 a2 411 200
Cpu Usage Ram Usage
° 66 <}
6 ©
62
2
60
o 58
°
56
o
10 32 e8% ol 12286 55 484 23 a2 13 300 18 39 68 ol 128 155 84 23 a2 11 00

Figure 35: Result plots Experiment #14.

Figure 36: Traversed paths for Experiment #15.

37

28

26

24

22

Table 18: Results for Experiment #15.

Test Traversed Flying Minimum Tree CPU Ram
Value path time (s) distance Calculation load usage

(m) distance (m) time (ms) (%) (MB)

(m

5 17.4232 30.526 2.03 17.512 227714 61.597
6.5 17.252 29.472 1.765 20.973 24.835 61.434
8 17.831 32.758 1.882 21.053 23.885 62.327
9.5 18.291 34.091 2.026 21.57 25.25 61.866
11 18.32 34.084 2.042 23.058 26.466 61.154
12.5 18.198 33.771 2.017 21.524 24541 62.497
14 18.283 33.718 2.061 22.115 24.992 61.47
15.5 18.502 37.157 2.105 24.326 24.886 61.514
17 18.155 32.89 1.989 21.127 25.19 62.182
18.5 18.11 33.836 1.974 21.442 25.788 62.342
20 18.174 33.363 1.916 21.885 25.896 61.304

Z I ;
S
’ W%—%%ﬁ

T

60

second

o

25

50 65

80

95

o

1O 125 0 185 110 185 500 50 5 g0 95

Minimum distance

10 25 1A% 155 170 185 00

Tree Calculation time

40

35
o

o

FrIT 0T

T : D

50 65 80 85 110 125 0 455 118 183 200

Cpu Usage

50 65 80 95 410 425 a0 455 410 485 200

millisecon

MB

ﬁ%%éﬁ*%@\%é%
AT

50 65 89 95 110 125 a0 155 170 85 500

Ram Usage

T]

L
[PRIT,

50 65 80 95 110 125 140 453 410 485 300

Figure 37: Result plots Experiment #15.

38

Table 19: Final operational parameter set choice.

Name Description Default Value
tree_node_distance Distance between nodes 2 0.8
children per node Branching factor of the search tree 8 9
n_expanded nodes Number of nodes expanded i complete tree 40 20
smoothing marein deerees smoothing radius for obstacle cost in cost histogram 40 33
Approximate distance from obstacles (m) when the 8.5 3.7
obstacle cost param . . :
- obstacle distance term dominates the cost function
yaw_cost_param Cost function weight for constant heading 3 20
tree_heuristic_weight Weight for the tree heuristic cost 35 35
pitch_cost_param Cost function weight for goal-oriented behavior 25 25
velocity_cost_param Cost function weight for path smoothness 6000 6000
max_point_age_s maximum age of a remembered data point 20 20
. . minimum number of points in one area to be kept if lower 1 1
min num points per cell T .
= - they are discarded as noise
. response speed of the smoothing system mn xy (setto O to 10 10
smoothing speed xy ! =
- - disable
. response speed of the smoothing system i z (set to 0 to 3 3
smoothing_speed z ! &=
- - disable)
max Sensor range Data points farther away will be discarded 15.0 15.0

e Virtual structure approach: In this approach, the formation of agents is considered as
a single object, called a virtual structure. The desired motion for the virtual structure
is given. The desired motions for the agents are determined from that of the virtual

structure.

e Behavioural approach: Several desired behaviours are prescribed for agents, such be-
haviours as cohesion, collision avoidance, obstacle avoidance, etc.

There are three concepts used for describing formation control features, which are local
and relative, and absolute.

e Relative: this term refers to the UAV’s perception of variables respective to the own
local coordination system.

Absolute: this term refers to the UAV’s perception of variables respective to a multi-
agent global coordination system.

Local: this term can be described from two aspects. Considering an interaction topol-
ogy, a formation control system that let agents to interact with all the others can
be considered non-local. On the contrary, as a formation control system performs
fewer interactions, it can be considered more local. Considering sensing topology, lo-
cal means relative. The term local can be described as a variable that is sensed with
respect to a local coordinate system. Consequently, this term implies the non-existence
of a global coordinator in both definitions.

Relative variable sensing can be associated with decentralized approaches. In this re-
spect, distance-based control can be considered more decentralized than position-based and
displacement-based control [48]. According to this, distance-based control only requires rela-
tive localization which is faster and easier than global localization. Absolute variable sensing
can be associated with centralized approaches. In this respect, position-based control can
be considered more centralized than distance-based and displacement-based control. Thus,
position-based control requires that each agent is able to localize itself respecting to the

39

global coordinate system, or access to some external global localization system providing
that information (e.g., GPS).

A formation control scheme can be classified into centralized or decentralized according
to whether it requires a global coordination system or not. Most formation control schemes
found in the literature fall into decentralized control and do not explicitly require a global co-
ordinator. A global coordinator, which implies centralized control, is an entity that gathers
information from all UAVs, computes formation, makes decisions, and distributes commands
to the UAVs in a cooperative manner. Considering the global coordinator’s requirements
for gathering required data, decentralized control is contrarily more compatible with local
control, which requires less computational resources [48]. For formation control purposes,
agents are required to sense variables respective to either their local coordination system or
a multi-agent global coordination system. Authors in [48] believed that the characterization
of formation control schemes in terms of the sensing capability and the interaction topology
of agents are linked to the essential features of multi-agent formation control. Considering
this characterization, the sensed variables and the actively controlled variables are the most
important terms to be considered in order to achieve a desired formation in multi-agent sys-
tems. The sensed variable type implies the requirement of agent capability in sensing while
the controlled variables are related to the interaction topology used by agents. Respectively,
actively controlling agents’ positions would let the agents move to their desired positions
without any specific interaction. Meanwhile, controlling agents’ inter-distances would result
in more interactions among agents to obtain a desired formation as a rigid body.

Based on observations, authors in [48] categorized the existing results on formation con-
trol into the following approaches according to types of sensed and controlled variables:

e Position-based control: It is required that the agents sense their absolute positions
with respect to a global coordinate system and actively control positions to achieve
the desired formation. Therefore, interactions between the agents are not essentially
required as the desired formation is acquired by controlling the individual agents’
position. Meanwhile, interactions can be engaged between agents for enhancing the
formation control performance or addressing additional purposes. This approach is
mostly considered as centralized as a global coordinator is required to get feedback from
the agents and provide them with appropriate coordination commands. Additionally,
interactions among the agents have turned out to be beneficial. The desired formation
can be achieved without any interactions among the agents under ideal conditions. In
comparison to the displacement-based and distance-based control, this approach might
be costly according to the requirement of advanced sensing equipment such as GPS
receivers. However, it could provide more effective solutions in practical applications
[48].

e Displacement-based control: It is required that each agent senses relative positions
(displacement) of its neighbouring agents with respect to the global coordinate system.
Therefore, this imposes on the existence of agent interaction. Agents are actively
controlling the displacements of neighbour agents to achieve the desired formation
with respect to a global coordinate system. Achieving the desired formation can be
described by either graph connectivity or the existence of a spanning tree.

e Distance-based control: It is required that each agent senses relative positions of neigh-
bour agents respecting to own local coordinate system. Therefore, this imposes on the
existence of agent interaction. It is not necessarily required that the orientations of
local coordinate systems are aligned with other agents. To achieve the desired for-
mation, the distances between each pair of agents are actively controlled which can
be treated as a rigid body. This formation is invariant to translation, rotation, or
even a combination of which applied to the correspondent positions. The interaction
graph needs to be rigid and can be directed or undirected. This approach only re-
quires relative localization which is easier than global localization implementation. In

40

Table 20: Formation control taxonomy according to [48].

Position-based Displacement-based Distance-based
Sensed Absolute agents” positions | Relative neighbours’ Relative neighbours’ positions
variables positions
Controlled Absolute agents” positions | Relative neighbours’ Inter-agent distances
variables positions

Coordination | A global coordinate system = Aligned orientation to the Local coordinate systems

systems local coordinate systems
Interaction Usually not required Ordered connectivity or Rigidity or persistence
fopology existence of a spanning tree

comparison to position-based and displacement-based, the advantage of this control is
the less need for global information. But, nonlinearity in multi-agent systems under
distance-based control laws, complicates stability analysis [48].

e Other approaches: Some approaches that do not fit into the previous categories are as
follows:

— Flocking

Estimation based formation control

— Pure distance-based control

Angle-based control

Containment control

— Cyclic pursuit

Table 20 summarizes the formation control distinctions based on the previous concepts.

In terms of the interaction topology, position-based control is particularly beneficial. Al-
though it requires agents to be equipped with more advanced sensors. In terms of the sensing
capability, distance-based control is advantageous, but it requires more interactions among
agents. In terms of both sensing capability and interaction topology, displacement-based
control is moderate compared to the other approaches as illustrated in Fig. 38. Therefore,
this reveals a trade-off between the number of agents’ interactions and the agents’ require-
ment for the sensing capability [48].

Depending on the explicitly predefined shape of the formation, it is also possible to
categorize formation control as follows [48]):

e Morphous formation control: this classification implies a formation that is explicitly
predefined by desired positions of agents, desired inter-agent displacements, desired
inter-agent distances, or etc.

e Amorphous formation control: this classification implies a formation without explicitly
predefined formation. The desired behaviours such as cohesion, collision avoidance,
etc., are specified for the agents. this is related to behavioural approach discussed
before.

4.3.2 Literature review

Several surveys on formation control of multi-agent systems are found in [48]. According
to the amount of literature on formation control, it would be challenging to exhaustively
review all the existing research on formation control. In this report, the latest solutions are
reviewed based on the categorization introduced in [48].

41

More advanced
Pasition-based sensing capability

Displacement-based —————#=
More
interactions

Distance-based

Figure 38: Sensing capability vs. interaction topology (adapted from [48]).

Position-based control — In [5], the authors presented a distributed method for for-
mation control of a team of aerial for navigating in environments with static and dynamic
obstacles. In this approach, a team of networked robots is considered in which each robot
only communicates with its neighbours. It is concluded that using a constrained non-linear
optimization combined with consensus, navigation of distributed teams of robots in a for-
mation among static and dynamic obstacles can be achieved. The communications between
UAVs were assumed noise-free and without packet losses (ideal communications). Using
computation of an obstacle-free convex region and optimizing formation parameters, au-
thors achieved a consensus formation control among the robots. Using consensus on convex
obstacle-free regions, the robots do not need to exchange the position of all the obstacles.
Instead, they compute, and exchange, the joint free spaces. Every communication process
will not continue only one At, but several At due to the communication equipment. The
authors successfully did the experiments in simulations with up to sixteen drones, and in
experiments with up to four drones. Authors also indicated that since the approach is local,
deadlocks may still occur. They have used an external motion capture system, that pro-
vides precise position information at a high update rate, to track the drones and obstacle
positions.

Authors in [31] had proposed a distributed formation control and collision avoidance
method based on Voronoi partition and conventional artificial potential field (APF). Using
partitioning the whole space into non-overlapping regions based on Voronoi partition the-
ory, collision avoidance is achieved. The conventional APF is used for designing the general
motion control law. Using a proposed switch scheme of destinations, drones avoid collision
when they reached the local equilibrium caused by the potential field. For the simulations,
authors had considered eight UAVs to form a formation from random initial positions using
MATLAB R2016a. For the real-world experiment, authors had used three drones , produced
by Intel, as the testing platform. In the experiment, when quadrotors violate the predefined
safe distance which causes the collision, the destinations are switched. The agents commu-
nicated with neighbours every At among a communication range less than rc, and it was
practical for agents to switch their roles with others if there is a switch request from other
agents within rswitch. Each agent broadcast its position and destination position to its
neighbour every At. They have concluded that the delay will not influence the final forma-
tion structure, but it influences the duration from start to the time when a final formation

42

is constructed. The time delay will not influence the final formation structure, but it only
influences the duration from start to the time when a final formation is achieved as the
collision avoidance is guaranteed by Voronoi partition and potential field.

Authors in [34] had proposed a swarm of agile micro quadrotors using an external local-
ization system in a centralized manner. In this work, they had focused on scaling down the
quadrotor groups to smaller ones to develop a truly small micro-UAV. They have believed
that the most important benefit of scaling down (in size) is the ability of the quadrotor to
operate in tightly constrained environments in tight formations. They have used a Vicon
motion capture system to sense the position of each vehicle at 100Hz. Using mixed-integer
quadratic programming techniques had let them coordinate up to twenty micro quadrotors
in known three-dimensional environments including obstacles.

In [4], arbitrary target patterns were represented with an optimal robot deployment,
using a method that was independent of the number of robots. The proposed approach
has focused on pattern formation based on Voronoi partitioning. The aim was to generate
both visually convincing final formations by optimizing the robots’ goal positions, as well
as simple and smooth robot motions at the transitions of patterns. To keep the formation
a set of goal positions was computed. Then based on the distances to the goal positions,
new goal positions were assigned to each agent. A centralized version of the Hungarian
algorithm, introduced in [33], was used to find the optimal assignment. For the experiments
using real robots, they have done the experiment in a flat area where 10 robots operate using
an overhead camera for localization of infrared LEDs and a centralized computing unit for
controlling the robots. For the simulation, they had increased the number of agents to 50.

Distance-based control — Another approach based on distributed vision-based nonlinear
formation control has been proposed in [62]. The authors have presented a solution for
the formation control of three UAVs while tracking a human worker in a power line tower
using a distributed vision-based nonlinear formation control approach (leader-follower). This
approach results in an adaptable formation where the controller minimizes the error in
observation always maintaining the visualization of the human by the whole formation.
Authors have proposed a formation control architecture composed of a human blob detector,
a multi-UAV sensor fusion, and a formation controller. They proposed a multi-UAV sensor
fusion that is based on a modified Kalman filter with combined states and covariances in
the prediction step. The formation controller finds the optimal position for each UAV to
track the human in formation while maintaining the desired distance and minimizing the
covariance of observation.

In [60], the authors proposed a control algorithm that consists of leader-follower principle
and consensus algorithm and artificial force based on APF. According to the simulation
results, they had proved that the system will achieve formation while avoiding collisions
between agents and obstacles while keeping the maximum distance between agents.

Using a proposed improved APF method for formation control with obstacle avoidance
in a complex environment in [72], authors were able to maintain a more flexible formation
obstacle avoidance while many static and dynamic obstacles exist. UAVs convergence to the
desired formation is ensured by using structural constraints of the formation configuration.

In [64], Using an improved consensus algorithm (ICA) for formation control and using a
combination of ICA and the particle swarm optimization (PSO) algorithm for static obstacle
avoidance and using a combination of model predictive control (MPC) with PSO for dynamic
obstacle avoidance. The ICA-PSO algorithm and MPC-PSO algorithm can be adaptively
switched when avoiding different types of obstacles. An APF is added along the axis OZ
to avoid the collision among UAVs without changing their motion in the XOY plane. The
authors mentioned that the communication topology among UAVs is not the main concern
in this study so that it is assumed that each UAV in the formation can communicate with
others without any problem.

Authors in [19] proposed a fully distributed control strategy for agents with higher-

43

order dynamics (i.e. drones). They proved that the fully distributed proposed control
can be implemented locally on agents using the relative position measurements. Thus,
agents are not supposed to communicate or have a common sense of orientation. The
robustness property of SDP design allows agents to move along a rotated control direction.
This property can be used to prevent collision among agents. They presented a distributed
control strategy for planar formations of agents with a variety of dynamics. They considered
agents with linear or input-to-state linearizable dynamics. The approach is based on the
barycentric-coordinate based (BCB) control, which is fully distributed, does not require
interagent communication or a common sense of orientation, and can be implemented using
relative position measurements acquired by agents in their local coordinate frames.

Authors in [65] have proposed a design of distributed UAV formation control. A con-
sensus controller, a task assignment strategy, and an obstacle avoidance algorithm had
designed. A hierarchical and modular multi-UAV simulation platform called XTDrone has
been developed. The authors proposed a consensus formation control algorithm based on
the leader-follower principle. The simulation validation had done containing 9 UAVs in the
simplified simulator, and 6 UAVs in Gazebo simulation, which validates the consensus con-
trol algorithm. In this approach, for simplification, the relative position ground truth is sent
to each UAV.

The work presented in [1] shows a Leader-referenced behavioural-based approach to for-
mation control. Additionally, it extends the work of Balch and Arkin to incorporate a
formation switching strategy and a decentralized approach [7]. Using a decentralization
would require transmitting a substantial amount of state between robots. Using an imple-
mentation of a motor schema, formation maintenance, as well as obstacle avoidance, was
obtained. Considering other robots as dynamic obstacles, collision avoidance was performed
between robots. If robots are approximately adjacent, the robot with the lowest ID halts
while the other can move, preventing deadlock. They have implemented a reactive forma-
tion switching strategy which determines the safest formation for the robots considering the
current environment. They have implemented centralized and decentralized formation con-
trol. Each approach visibly maintains formation while the robots traverse the arena. They
concluded that having a centralized approach allows reaching the goal in a shorter time
as robots are aware of other robot positions. They used a variant of the rapidly-exploring
random trees (RRT) algorithm, called RRT*, to generate paths for robots. The centralized
algorithm relies on knowledge of all robot positions as well as their combined view of the
world. The decentralized solution achieves this with limited message passing between robots
to communicate the required state. Communication links are defined between certain robots
in each formation.

In [57], the authors considered the challenge of a decentralized control strategy for con-
trolling a group of quadrotors able to measure relative bearings in their own body frames.
They have simulated the purposed formation control strategy using six quadrotors in V-REP
as well as having an experiment with four real quadrotors using onboard computers and on-
board cameras for relative localization of the quadrotors. The proposed control/estimation
scheme has not necessarily required a special topology for the interaction graph. The bear-
ing controller and the localization algorithm have the same decentralized expression for all
agents as a function of the measured bearings and body-frame linear/angular velocities.
The proposed control strategy has relied on an extension of the rigidity theory. This ex-
tension has allowed them to devise a decentralized bearing controller that was needless of
the presence of a common reference frame or of reciprocal bearing measurements for all the
agents.

The authors proposed a decentralized gradient-based controller in [56], which was able to
enforce bearing rigidity maintenance for a group of UAVs equipped with onboard cameras.
The proposed control tried to localize other drones using onboard cameras and the bearing
measurements. They had presented an algorithm for bearing rigidity maintenance to keep
the formation of drones and the strategy is inspired by the connectivity rigidity maintenance

44

controllers.

The authors of [29] have proposed a novel and feasible path planning technique based on a
multiple-objective optimization algorithm for a group of UAVs called “angle-encoded swarm
optimization”. The goal was to minimize the travel distance of UAVs while simultaneously
avoiding obstacles and maintaining altitude constraints as well as the shape of the UAVs’
formation. The formation was modelled as a virtual rigid body and had controlled to
maintain a desired geometric shape among the generated path which was based on the
centroid of the formation. They have experimented with the formation using three 3DR Solo
drones equipped with a proprietary Mission Planner software, and the Internet-of-Things
(IoT) for multi-directional communication between the UAVs to share position data.

A fully decentralized strategy for maintaining the formation rigidity of a multi-robot sys-
tem using range measurements was proposed in [68] by authors. In this approach, the graph
topology was allowed to change freely over time. A distributed algorithm for estimating a
common relative position reference frame amongst a team of robots was proposed in this
work. The purposed algorithm was performing only range measurements in addition to one
agent which was endowed with the capability of measuring the bearing to two other agents.
They have used an estimation of the rigidity eigenvalue and eigenvector which was finally
used to generate a local control action for each agent to maintain the rigidity property and to
enforce additional constraints such as collision avoidance and neighbour sensing or limiting
communication range. In this approach, the communication and sensing links among the
robots were left free to change over time while preserving rigidity. The proposed approach
was experimentally validated with a robotic testbed consisting of 6 quadrotors (five real
robots and a simulated one) UAVs operating in a cluttered environment.

A decentralized connectivity maintenance strategy for the teleoperation of a team of
UAVs was presented in [2], an extension of the previous work reported in [22] and [58]. They
have addressed the problem of connectivity maintenance for a team of drones as well as
collision avoidance and obstacle avoidance using a leader-follower approach. Furthermore,
they have addressed the problem of airflow avoidance by introducing an airflow-avoidance
technique to prevent the influence of airflow generated by the drones on others. They also
have implemented a consensus-based velocity control which enabled all follower robots to
track the leader’s velocity. Using this feature let the drones’ fast movements while maintain-
ing high flexibility and minimal change of topology of the formation. They have also had
another improvement which enabled the automatic decrease of the connectivity eigenvalue
minimum asymptote, with the objective of achieving a dynamic expansion of the formation
which enabled the formation to cover ground as much as possible which can be useful for
surveillance and mapping applications. They have also addressed the problem of deadlock
by improving the automatic detection and resolution of deadlock configurations which was
caused by conflicts between the connectivity force. The result of this work was simulated in
V-REP using five to nine drones and was experimented with real drones using three drones
(one leader, two followers).

In [70], cooperative control of UAV cluster formation based on distributed consensus
has been studied. The formation control and speed tracking control of UAV based on dis-
tributed consensus control algorithm were implemented considering a determined commu-
nication topology. The simulation of four UAVs has been done such that the UAVs in front
of the formation was broadcasting a formation change command after encountering obsta-
cles and selecting the appropriate formation by calculation and then broadcasting the new
formation to other UAVs. In this work, consensus stability could be achieved if and only if
the multi-agent communication network contains directed spanning trees, or the undirected
communication network topology map which was a fully connected graph. Using simulation
results, they have proved that the distributed consensus-based control algorithm was able
to perform the operation of the UAV cluster formation, maintenance, and transformation.

In [36], a solution for formation and obstacle avoidance of UAVs has been proposed
that was able to achieve cluster situational awareness, autonomous formation control and

45

intelligent collaborative decision making. An algorithm for the cooperative formation of
multiple UAVs has been proposed that avoided the obstacles simultaneously while keeping
the formation. They have integrated the improved artificial potential field algorithm and the
formation algorithm to form the total virtual force by modifying the Reynolds clustering
rule [49]. Using this improvement, the speed of the formation members, as well as the
expected distance between agents, were maintained. the weight coefficient of consensus
theory has been used to prioritize UAVs. Considering multiple UAVs as a cluster resulted in
keeping formation and avoiding internal collision by exchanging state information inside the
formation. They had presented the result of the proposed approach via simulations using
MATLAB in different scenarios.

A formation maintenance algorithm, based on the leader-follower approach, for multiple
UAVs, integrated with a collision avoidance capability was developed and simulated in [67].
The simulations have shown satisfactory results that the UAVs were able to dynamically
bypass obstacles without colliding with them while maintaining the given swarm formation.
The formation control was done by accelerating and decelerating on demand according to
the distance with the leader drone. Using distributed approach had led the UAVs to take
fast local decisions when approaching obstacles. Moreover, the algorithm has also considered
the lost UAVs by routing them towards the destination and making a temporary formation
when they have been lost. They have done the simulations using 5 drones in a constant
altitude. The first drone was responsible for obstacle avoidance and path planning to the
goal and other drones were following.

A novel onboard relative localization approach, the UVDAR system for visual relative
localization with application to leader-follower formations of multirotor UAVs, was proposed
in [63]. This approach, which is based on ultraviolet light, is used for real-time control of
a leader-follower formation of multirotor UAVs. A new sensor, called UVDAR, is employed
in an innovative way. It does not require communication and is extremely reliable in real-
world conditions. This sensing system provides relative position and yaw measurements
independently of environmental conditions such as changing illumination and the presence
of undesirable light sources and their reflections. The maximum distance for reliable de-
tection by the UVDAR is 15m. To validate the performances of the proposed algorithm,
they conducted real-world outdoor flights experiment with two DJI f550-based hexarotors,
equipped with an Intel NUC7 computer, and a PixHawk flight controller.

The authors of [40] introduced a unified formation flying pipeline with distributed for-
mation control and task assignment solutions that run onboard the vehicles and use VIO
for localization. They used the alternating direction method of multipliers (ADMM) solver
to address the scalability issue of general solvers for obtaining formation gains in a com-
putationally efficient manner. They had started to investigate scalability by comparing the
runtime of the ADMM-based solver with the interior-point method used in CVX to solve the
SDP formulation. They had used software-in-the-loop simulations and hardware demonstra-
tions and implemented the pipeline in C++ using Robot Operating System. To evaluate the
approach, they have experimented with the approach in simulation with up to 100 UAVs,
and six UAVs in real-world by cycling through the three formations. A base station was used
only to dispatch the desired formation graph to the UAVs during the experiment. For each
trial, the pipeline was tested in three main configurations: with centralized assignment, with
distributed assignment, and without assignment. Finally, they have concluded that every
trial using assignment was successful.

Displacement-based control — In [50], the authors proposed a Sliding mode control
(SMCQ) for trajectory tracking and control formation based on the leader-follower principle
for multiple UAVs. They conclude that the implemented SMC as the formation control
approach shows the desired performance and maintains the proposed formation. For the
experiments, they have used bebop 2 drones consisting of the defined trajectory tracking,
using 3 drones in a triangle type formation (a leader and two followers). The experimental

46

results show that the proposed method can move the quadrotors to any position.

In [54], the authors proposed a novel concept of motion planning and stabilization of
formations of micro aerial vehicles based on a dynamic virtual-leader-follower scheme. This
concept is suited for utilization of onboard visual relative localization of neighbouring MAVs,
which can be considered as a novel approach for GPS denied environments navigation.
In this approach, Wi-Fi communication was employed for sharing the map updates. For
localization purposes, they have relied only on onboard sensors (like IMU, PX4flow, and the
relative visual localization system) and no external positioning system was used.

Considering a leader-follower principle, a new approach based on stress matrices to
achieve formation manoeuvre control in arbitrary dimensions was proposed in [71]. Au-
thors have proposed distributed control laws for single-integrator, double-integrator, and
unicycle agent models. Any target formation can be tracked by the proposed control laws.
As a result, the centroid, orientation, scales in different directions, and other geometric
parameters of the formation can be changed continuously.

Other approaches — Authors in [21] had addressed the problem of motion controlling for
a group of UAVs to keep a formation in terms of only relative angles, called bearing formation
control. A bearing-only formation controller was proposed which was requiring only bearing
measurements and trying to maintain bounded inter-agent distances despite the lack of direct
metric information. In the case of a human operator in charge of steering the formation,
formation maintenance was achieved by employing two force-feedback devices to provide
haptic cues informative of group performances with respect to human instructions. The
relative bearings that are needed by the controller were obtained from an onboard monocular
camera with a horizontal /vertical FOV of about 88/60° and by detecting a coloured sphere
equipped on the top of every other drone. Due to the restrictions of the limited FOV on
the drones, they have forced every UAV to rotate with some rotation speed to scan the
environment and periodically detect all the other UAVs. The task started with forcing every
UAV to perform a complete 360° scan to estimations of all the relative azimuths. Then,
during normal motion, the UAVs are supposed to rotate towards the neighbour UAV that was
not seen for the longest time. Depending on the formation configuration, if a UAV was able
to measure the bearings relative to all the other UAVs, it was supposed to simply rotate to
keep them in the most centred way to keep the data up to date. In the simulations, they have
assumed an unlimited FOV capability for the UAVs so that relative bearings could always
be retrieved. They had performed the simulation of a human/hardware-in-the-loop (HHIL)
involving 12 UAVs starting far from the desired bearing formation. They had estimated that
the communication complexity between N drones is 2(N — 1) + 1 exchanged messages over
the network per unit of time.

The formation maintenance of multiple UAVs based on proximity behaviour have been
studied in [37]. According to the expected UAV formation structure and the predicted po-
sition, velocity, and attitude information of other UAVs in the azimuth area, an adaptive
distributed formation flight strategy was established by exploiting proximity behaviour ob-
servations. The proposed method has considered the azimuth area relative to the UAV
to capture the state information of other proximal UAVs. The dependency degree factor
was introduced to update the state equation based on proximity behaviour. The positions,
speeds, and attitude errors were used to form an adaptive dynamic adjustment strategy
in formation. In the simulation, six UAVs were distributed on three levels with a height
difference of 10m and they were communicating with neighbour UAVs.

A formation control law was provided in [44]. It has combined the control and communi-
cation constraints in a balanced manner. Using consensus-based laws for double integrated
dynamics, introduced in [32], and concepts of social potential function proposed in [49, 43|,
a leader-follower formation approach was addressed that has enabled collision avoidance
while maintaining agents’ network connectivity. This approach has prevented the usage of
force on multiple probable collisions among agents and furthermore avoided handling too

47

much information. The control law was simulated using MATLAB to generate a V-shaped
formation.

As a case study in [20], the authors have addressed the problem of multi-agent formation
control. They have proposed a distributed control strategy to stabilize a formation that was
described with bearing constraints that only required bearing measurements and parallel
rigidity of the interaction graph. They have considered the possibility of having a more
refined model of the multi-agent network by allowing a multiple-graph representation to
explicitly consider the conceptual difference between sensing, communication, control, and
parameters stored in the network. They have also addressed the required interaction network
by explicitly considering the conceptual difference between, sensing, communication, control,
and parameters stored in the network, and by exploiting modelling analyzed the connection
between scalability, minimality and rigidity.

The authors of [68] addressed a formation control problem for a team of agents that are
only able to sense the relative bearings from their local body frame to neighbouring agents.
Each agent has been tasked with maintaining predetermined bearings in respect to their
neighbours. Using the developed rigidity theory for SE(2) frameworks, introduced in [69],
they have proposed a gradient-type controller to stabilize the formation that was directed
bearing rigidity matrix. The simulation had contained 6 agents.

A novel algorithm for representing static and deforming shapes with a multi-agent sys-
tem, called Shaped Flocking, has been described by authors in [28]. They have demonstrated
a system that allows a user to perform real-time directioning of a swarm of robots via a draw-
ing interface for the field of entertainment robotics. For the experimental setup, they have
used a workspace for robots and an overhead camera for localization and a central computer
for drawing interface and robot control.

In [39], the authors proposed a reinforcement learning approach using a DeepSarsa based
path planning and obstacle avoidance method for helping UAVs to avoid moving obstacles as
well as finding a path to a target based on a deep neural network. To verify the performance
of the proposed approach, two UAVs want to pass a small terrain, where two flying obsta-
cles cut their paths and one static obstacle stays in the front of the exit. After performing
experiments and simulation, the authors conclude that the Deep-Sarsa model performance
in the application of path planning and obstacle avoidance, especially in a dynamic envi-
ronment, is noticeable. The trained model can provide a reliable path for UAVs without
collisions. The proposed approach has been trained in a simplified environment and tested
in a ROS-Gazebo simulation platform.

Overview — The list for the state of the art on formation control is presented in Table .
For comparison purpose and summarization of the approaches, used terms, acronyms
and abbreviations are defined next:

e SC: availability of the source code;
e CA: capability of collision avoidance between drones;
e OA: capability of avoiding obstacles for each drone;

e MND: the maximum number of drones used in the simulation experiment or in the
real environment experiment;

e CLT: This column indicates the communication loss tolerant of the approach, i.e. how
tolerant is the agents’ communication while there would be a communication loss;

e RU: capability of using the approach in real-time;

e “N/A” means not enough information is available;

48

e Replicability: this indicates the feasibility of implementing new software based on the
description of a computational model or method provided in the original publication.
Replicating a published result means developing new software based on the description
of a computational model or method provided in the original publication and obtaining
results that are similar enough to be considered equivalent [8]. The 5-star ranking
implies a percentage from 0% — 100% likelihood of a solution being replicable.

e ULCR: usability under limited computational resources (reference provided by Tables 1
and 2).

4.3.3 Selecting the right solution for the SEMFIRE use case scenarios

According to the proposed drone configuration, presented in Tables 1 and 2, and SEMFIRE
project scenario, some concepts should be considered to select the most adequate approach
to the SEMFIRE use case. The SEMFIRE use case includes four stages: initial deployment,
reconnaissance, clearing and aftermath. In the first three stages, the Scouts are supposed
to autonomously spread while maintaining multimodal connectivity among each other and
the Ranger through distributed formation control, thus leading to a certain degree of spatial
compactness above the target area. Scouts are collectively exploring the target area with
the goal of finding the regions of interest (ROIs) within the target area. To Achieve a
formation among UAVs, it could be done using a centralized or decentralized approach.
Using a centralized approach requires a reliable connection among UAVs and the coordinator
(possibly Ranger) and it also may require an absolute localization as well. In a decentralized
approach, both absolute and relative localization could be used. It is more efficient to use a
relative localization to be more resistant to possible communication loss among UAVs and
Ranger.

By reviewing the literature on formation control in previous sections, some challenging
main concerns regarding cooperative formation control should be considered to achieve the
SEMFIRE goal. Thus, two concepts are important and should be considered. I) Communi-
cation and II) Localization.

To maintain communication, it is required to have a threshold for the distance that would
limit how far the scouts could be distanced apart according to the wireless communication
infrastructure between UAVs. To achieve this, it is required to have a good and reliable
communication infrastructure. According to the SEMFIRE goal, it is required to have a
semantic map as the result of the UAVs’ explorations. Therefore, there should be good and
reliable communication between the UAVs and the Ranger. Also, it is required to select a
proper formation control strategy requiring less communication bandwidth.

To maintain the formation, it is required to have a localization system. According to
the possible errors in absolute localization using GPS below the canopies inside a forest,
it is most efficient to use a relative localization system among UAVs and Ranger. In most
research, it is assumed that relative localization is available to all the UAVs. Most of the
approaches are done in GPS denied environment. According to the configuration of Scouts
in the SEMFIRE project, it is feasible to have a localization using onboard cameras that let
them maintain a distributed formation.

According to the comparisons in Tables 21 and 22, and according to the requirements-
feined above, the most feasible approach required to be decentralized and a combination of
global with relative localization to reduce the risk of GPS signal loss and communication
loss among UAVs. Considering these concepts, the reviewed approaches are listed in Table

. in the order of highest replicability to lowest.

4.3.4 Implementation and Simulation

Localization error model for simulation — According to the possible errors in localiza-
tion of drones inside the forest, it is required to have an additive error model for localization

49

Table 21: Centralized vs decentralized approach comparison.

Centralized Decentralized

Communication | The coordinator requires a connection UAVs require do not require a
between all UAVs connection with any specific agent
Required data Absolute position, formation data Relative position or bearing, distance

and formation data

Complexity Requires reliable data from most UAVs Requires data from neichbour UAVs
(maybe all) and fast and reliable
connection

Table 22: Global vs relative localization comparison.

Global localization Relative localization
Communication | Required for consensus on the May not always be required
formation and sharing positions
Required data Absolute posttions Relative bearing and distance of
neighbours
Complexity Requires global localization equipment Requires relative localization
and reliable connection equipment. 1.e. UWBs, onboard camera

in simulation using Gazebo. In that case, three random numbers (E,, E,, E.) in a uniform
distribution with the maximum value of +0.5m is added to the current drone’s position.

Integration in ROS framework — The MRS UAV system, ACLSWARM?*, and PX4-
Avoidance® packages are used for the SEMFIRE use case. To integrate these packages, it
is required to implement a middleware node to get raw localization data from the MRS
UAV system and feed them to other packages as represented in Fig. 39 which presents an
overview of the integration process. The drones raw position data are fed to a middle-ware
python node to add the error model to them. Therefore, the noisy position data are fed to
the ACLSWARM package to generate swarm positions. The output of the ACLSWARM
package is fed to the PX4 avoidance package then as goals to generate trajectories considering
obstacles in the FOV of the drones. In order to have the best experience in path planning,
the drones are required to turn to the direction of the goals first without movement.

5 Conclusion

This deliverable addressed the deployment of the heterogeneous multi-robot team of the
SEMFIRE project in simulation in order for the team to start the mission and the first task
— the reconnaissance task. The problem was introduced and defined in Section 1. Section
2 surveyed relevant literature in this domain. Section 3 presented the initial deployment
strategy that was designed to fulfill the specific requirements of the use-case scenarios of the
SEMFIRE project. Section 4 presented extensive simulations of the deployment strategy
presented in this deliverable so as to test it, introduce any adjustments found necessary, and
validate it in simulated scenarios.

4https://bitbucket.org/semfire-isr-uc/aclswarm/
Shttps://bitbucket.org/semfire-isr-uc/px4-avoidance/

50

Actions:
Provide drones'

. sition commands sition
raw positions pg Itl ts" b , Actions: Generate pz It.l S.G "
utput: Drones formations ctions: Generate

Output: Drones'
relative movement

Inputs: Drones' raw

Inputs: Drones's goal

positions including
noise

traversable paths

Figure 39: System integration as a ROS framework.

In the ensuing pilot trials, the research team will validate the strategy with the real

platforms in a real scenario.

References
[1] Multi-Robot-Formation-Control: A group project to implement multi-
robot formation control. Github. URL https://github.com/sumaiyah/

2]

13l

[4]

[5]

(6]

7]

18]

19]

Multi-Robot-Formation-Control.

M. Aggravi, C. Pacchierotti, and P. R. Giordano. Connectivity-Maintenance Teleoper-
ation of a UAV Fleet With Wearable Haptic Feedback. IEEFE Trans. Autom. Sci. Eng.,
2020. doi: 10.1109/tase.2020.3000060.

Ali Ahmadi. MRS UAV System Tutorial. techreport TR-SEMFIRE-2-vA, Institute of
Systems and Robotics, University of Coimbra, 2021.

J. Alonso-Mora, A. Breitenmoser, R. Siegwart M. Rufli, and P. Beardsley. Multi-robot
system for artistic pattern formation. In Proc. - IEEE Int. Conf. Robot. Autom. (ICRA),
page 4512-4517, 2011. doi: 10.1109/ICRA.2011.5980269.

J. Alonso-Mora, E. Montijano, T. Négeli, O. Hilliges, M. Schwager, and D. Rus. Dis-
tributed multi-robot formation control in dynamic environments. Auton. Robots, 43(5),
2019. doi: 10.1007/s10514-018-9783-9.

Tomas Baca, Matej Petrlik, Matous Vrba, Vojtech Spurny, Robert Penicka, Daniel
Hert, and Martin Saska. The MRS UAYV system: Pushing the frontiers of reproducible
research, real-world deployment, and education with autonomous unmanned aerial ve-
hicles. arXiv preprint arXiv:2008.08050, 2020.

T. Balch and R. C. Arkin. Behavior-based formation control for multirobot teams.
IEEE Trans. Robot. Autom., 14(6):926-939, 1998. doi: 10.1109/70.736776.

L. A. Barba. Terminologies for Reproducible Research. arXiV, February 2018. URL
https://arxiv.org/abs/1802.03311v1.

N. Bartolini, T. Calamoneri, E. G. Fusco, A. Massini, and S. Silvestri. Snap and spread:
A self-deployment algorithm for mobile sensor networks. In Sotiris E. Nikoletseas, Bog-
dan S. Chlebus, David B. Johnson, and Bhaskar Krishnamachari, editors, Distributed
Computing in Sensor Systems, pages 451-456, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-69170-9.

o1

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

R. W. Beard, J. Lawton, and F. Y. Hadaegh. A coordination architecture for spacecraft
formation control. IEEE Trans. Control Syst. Technol., 9(6), 2001. doi: 10.1109/87.
960341.

S. J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar. A Survey on Aerial
Swarm Robotics. IEEE Trans. Robot., 34(4):837-855, August 2018. doi: 10.1109/TRO.
2018.2857475.

N. Correll, J. Bachrach, D. Vickery, and D. Rus. Ad-hoc wireless network coverage
with networked robots that cannot localize. In 2009 IEEFE International Conference on
Robotics and Automation, pages 3878-3885, 2009.

M. S. Couceiro, R. P. Rocha, and N. M. Ferreira. Ensuring ad hoc connectivity in
distributed search with robotic darwinian particle swarms. In In Proc. of 9th IEEFE Int.
Symposium on Safety, Security, and Rescue Robotics (SSRR’2011), pages 284-289,
Kyoto, Japan, Nov. 2011.

M. S. Couceiro, C. Figueiredo, D. Portugal, R. P. Rocha, and N. M. Ferreira. Initial
deployment of a robotic team: a hierarchical approach under communication constraints
verified on low-cost platforms. In Proc. of 2012 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS 2012), pages 4614-4619, Vilamoura, Portugal, Oct. 2012.

M. S. Couceiro, D. Portugal, R. P. Rocha, and N. M. F. Ferreira. Marsupial teams of
robots: Deployment of miniature robots for swarm exploration under communication
constraints. Robotica, 32(7):1017-1038, Oct. 2014.

M. S. Couceiro, D. Portugal, J. F. Ferreira, and R. P. Rocha. SEMFIRE: Towards a new
generation of forestry maintenance multi-robot systems. In Proc. of 2019 IEEE/SICE
Int. Symp. on System Integration, pages 270-276, Paris, France, Jan. 2019.

Micael S. Couceiro. Fvolutionary Robot Swarms under Real-World Constraints. PhD
thesis, University of Coimbra, Portugal, Sep. 2013.

F. Dellaert, T. R. Balch, M. Kaess, R. Ravichandran, F. Alegre, M. Berhault,
R. McGuire, E. Merrill, L. V. Moshkina, and D. Walker. The Georgia Tech Yel-
low Jackets: A marsupial team for urban search and rescue. In William D. Smart,
Tucker R. Balch, and Holly A. Yanco, editors, AAAI Mobile Robot Competition 2002,
Papers from the AAAI Workshop, 28 July - 1 August 2002, Edmonton, Alberta, Canada,
volume WS-02-18 of AAAI Technical Report, pages 44-49. AAAT Press, 2002.

K. Fathian, S. Safaoui, T. H. Summers, and N. R. Gans. Robust Distributed Pla-
nar Formation Control for Higher Order Holonomic and Nonholonomic Agents. IEEE
Trans. Robot., 37(1):185-205, February 2021.

A. Franchi and P. R. Giordano. Decentralized control of parallel rigid formations with
direction constraints and bearing measurements. In Proc. IEEE Conf. Decis. Control,
2012. doi: 10.1109/cdc.2012.6426034.

A. Franchi, C. Masone, V. Grabe, M. Ryll, H. H. Biilthoff, and P. R. Giordano. Modeling
and control of UAV bearing formations with bilateral high-level steering. Int. J. Rob.
Res., 31(12), 2012. doi: 10.1177,/0278364912462493.

P. R. Giordano, A. Franchi, C. Secchi, and H. H. Biilthoff. A passivity-based decen-
tralized strategy for generalized connectivity maintenance. The International Journal
of Robotics Research, 32(3), March 2013. doi: 10.1177/0278364912469671.

N. D. Griffiths Sanchez, P. A. Vargas, and M. S. Couceiro. A Darwinian swarm robotics
strategy applied to underwater exploration. In 2018 IEEE Congress on Fvolutionary
Computation (CEC), pages 1-6, 2018.

52

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

D. Gronau. The Spiral of Theodorus. The American Mathematical Monthly, 111(3):
230-237, 2004.

R. Grof, R. O’Grady, A.L. Christensen, and M. Dorigo. The swarm-bot experi-
ence: Strength and mobility through physical cooperation. In Serge Kernbach, edi-
tor, Handbook of Collective Robotics, chapter 2. Jenny Stanford Publishing, 2013. doi:
10.4032/9789814364119.

H. K. Hahn and K. Schoenberger. The ordered distribution of natural numbers on the
square root spiral. The Journal of Business, 2007.

G. Hattenberger, S. Lacroix, and R. Alami. Formation flight: evaluation of autonomous
configuration control algorithms. In 2007 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 2628-2633, 2007.

S. Hauri, J. Alonso-Mora, A. Breitenmoser, R. Siegwart, and P. Beardsley. Multi-Robot
Formation Control via a Real-Time Drawing Interface. Springer Tracts Adv. Robot.,
92:175-189, 2014. doi: 10.1007/978-3-642-40686-7 _12.

V. T. Hoang, M. D. Phung, T. H. Dinh, and Q. P. Ha. Angle-Encoded Swarm Opti-
mization for UAV Formation Path Planning. In TROS 2018, 2018. doi: 10.1109/IROS.
2018.8593930.

A. Howard, M. J. Matarié¢, and G. S. Sukhatme. Mobile sensor network deployment
using potential fields: A distributed, scalable solution to the area coverage problem.
In H. Asama, T. Arai, T. Fukuda, and T. Hasegawa, editors, Distributed Autonomous
Robotic Systems 5, pages 299-308, Tokyo, 2002. Springer Japan. ISBN 978-4-431-65941-
9.

J. W. Hu, M. Wang, Q. Pan C. H. Zhao, and C. Du. Formation control and collision
avoidance for multi-UAV systems based on Voronoi partition. Sci. China Technol. Sci.,
63(1), 2020. doi: 10.1007/s11431-018-9449-9.

S. Joshi and O. Gonzalez. Consensus-Based Formation Control of a Class of Multi-
Agent Systems. Technical Report NASA /TM-2014-218663, National Aeronautics and
Space Administration (NASA), 2014.

H. W. Kuhn. The Hungarian method for the assignment problem. Nav. Res. Logist.
Q., 2(1-2):83-97, March 1955. doi: 10.1002/NAV.3800020109.

A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar. Towards a swarm of agile micro
quadrotors. Auton. Robot., 35(4), July 2013. doi: 10.1007/S10514-013-9349-9.

G. Lee, Y. Nishimura, K. Tatara, and N. Y. Chong. Three dimensional deployment of
robot swarms. In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 50735078, 2010.

Q. Lin, X. Wang, and Y. Wang. Cooperative Formation and Obstacle Avoidance Al-
gorithm for Multi-UAV System in 3D Environment. In Chinese Control Conference,
CCC, 2018, July 2018. doi: 10.23919/ChiCC.2018.8483113.

W. Liu, X. Zheng, and Z. Deng. Adaptive distributed formation maintenance for mul-
tiple UAVs: Exploiting proximity behavior observations. J. Cent. South Univ., 28(3):
784-795, April 2021. doi: 10.1007/S11771-021-4645-6.

D. S. B. Lourenco, J. F. Ferreira, and D. Portugal. 3D local planning for a forestry
UGV based on terrain gradient and mechanical effort. In Proc. of 2020 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS 2020), , Workshop on Perception,
Planning and Mobility in Forestry Robotics (WPPMFR 2020), Las Vegas, NV, USA,
Oct. 2020.

53

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

W. Luo, Q. Tang, C. Fu, and P. Eberhard. Deep-Sarsa Based Multi-UAV Path Plan-
ning and Obstacle Avoidance in a Dynamic Environment. In Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), volume 10942,
page 102-111. LNCS, June 2018. doi: 10.1007/978-3-319-93818-9 10.

P. C. Lusk, X. Cai, S. Wadhwania, A. Paris, K. Fathian, and J. P. How. A Distributed
Pipeline for Scalable, Deconflicted Formation Flying. IEEE Robot. Autom. Lett., 5(4):
5213-5220, March 2020. doi: 10.1109/1ra.2020.3006823.

D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431-441, 1963.
doi: 10.1137,/0111030.

A. Metiaf and Q. Wu. Particle swarm optimization based deployment for WSN with the
existence of obstacles. In 2019 5th International Conference on Control, Automation
and Robotics (ICCAR), pages 614-618, 2019.

A. Mueller. Modern Robotics: Mechanics, Planning, and Control
Bookshel f
. IEEE Control Syst. Mag., 39(6):100-102, 2019. doi: 10.1109/MCS.2019.2937265.

S. Mukherjee and K. Namuduri. Formation Control of UAVs for Connectivity Mainte-
nance and Collision Avoidance. In Proceedings of the IEEE National Aerospace Elec-
tronics Conference, NAECON, 2019, 2019. doi: 10.1109/NAECON46414.2019.9058089.

R. R. Murphy. Marsupial and shape-shifting robots for urban search and rescue. IEEE
Intelligent Systems and their Applications, 15(2):14-19, 2000.

R. R. Murphy, M. Ausmus, M. Bugajska, T. Ellis, T. Johnson, N. Kelley, J. Kiefer, and
L. Pollock. Marsupial-like mobile robot societies. In Proceedings of the Third Annual
Conference on Autonomous Agents, AGENTS 99, page 364-365, New York, NY, USA,
1999. Association for Computing Machinery. ISBN 158113066X. doi: 10.1145/301136.
301236. URL https://doi.org/10.1145/301136.301236.

M. Niccolini, M. Innocenti, and L. Pollini. Near optimal swarm deployment using de-
scriptor functions. In 2010 IEEFE International Conference on Robotics and Automation,
pages 4952-4957, 2010.

K. K. Oh, M. C. Park, and H. S. Ahn. A survey of multi-agent formation control.
Automatica, 53, 2015.

R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Trans. Automat. Contr., 51(3):401-420, March 2006. doi: 10.1109/TAC.2005.
864190.

D. V. Redrovan and D. Kim. Multiple quadrotors flight formation control based on
sliding mode control and trajectory tracking. In International Conference on Elec-
tronics, Information and Communication, ICEIC 2018, January 2018. doi: 10.23919/
ELINFOCOM.2018.8330657.

W. Ren and Y. Cao. Distributed coordination of multi-agent networks: Emergent
problems, models, and issues. In Communications and Control Engineering, number

9780857291684, page 1-307. Springer International Publishing, 2011.

P. E. Rybski, N. P. Papanikolopoulos, S. A. Stoeter, D. G. Krantz, K. B. Yesin, M. Gini,
R. Voyles, D. F. Hougen, B. Nelson, and M. D. Erickson. Enlisting rangers and scouts
for reconnaissance and surveillance. IEEE Robotics Automation Magazine, 7(4):14-24,
2000.

54

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

C. Sahin, E. Urrea, M. U. Uyar, M. Conner, I. Hokelek, G. Bertoli, and C. Pizzo. Self-
deployment of mobile agents in MANETSs for military applications. In Army Science
Conference, pages 1-8, 2008.

M. Saska, T. Baca, and D. Hert. Formations of unmanned micro aerial vehicles led by
migrating virtual leader. In International Conference on Control, Automation, Robotics
and Vision (ICARCYV), 2016. doi: 10.1109/ICARCV.2016.7838801.

D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen. A survey of spacecraft formation fly-
ing guidance and control (Part II): Control. In Proceedings of the American Control
Conference, volume 4, 2004. doi: 10.23919/acc.2004.1384365.

F. Schiano and P. R. Giordano. Bearing rigidity maintenance for formations of quadro-
tor UAVs. In Proc. - IEEE Int. Conf. Robot. Autom. (ICRA 2017), page 14671474,
July 2017. doi: 10.1109/ICRA.2017.7989175.

F. Schiano, A. Franchi, D. Zelazo, and P. R. Giordano. A rigidity-based decentralized
bearing formation controller for groups of quadrotor UAVs. IEEE Int. Conf. Intell.
Robot. Syst., page 5099-5106, November 2016. doi: 10.1109/TROS.2016.7759748.

C. Secchi, A. Franchi, H. H. Bulthoff, and P. Robuffo Giordano. Bilateral control of the
degree of connectivity in multiple mobile-robot teleoperation. In Proc. - IEEFE Int. Conf.
Robot. Autom. (ICRA 2013), page 3645-3652, 2013. doi: 10.1109/ICRA.2013.6631089.

H. Tang, Q. Wu, and B. Li. An efficient solution for joint power and trajectory opti-
mization in UAV-enabled wireless network. IEEE Access, 7:59640-59652, 2019.

R. Toyota and T. Namerikawa. Formation control of multi-agent system considering
obstacle avoidance. In 2017 56th Annual Conference of the Society of Instrument and
Control Engineers of Japan, SICE 2017, November 2017. doi: 10.23919/SICE.2017.
8105616.

Sfera Utimate. Deliverable 1.1. Technical report, SEMFIRE P2020 R&D Project,
December 2018.

T. Uzakov, T. P. Nascimento, and M. Saska. UAV Vision-Based Nonlinear Formation
Control Applied to Inspection of Electrical Power Lines. In International Conference on
Unmanned Aircraft Systems (ICUAS), 2020. doi: 10.1109/ICUAS48674.2020.9213967.

V. Walter, N. Staub, A. Franchi, and M. Saska. UVDAR System for Visual Relative
Localization with Application to Leader-Follower Formations of Multirotor UAVs. IEEE
Robot. Autom. Lett., 4(3):2637-2644, July 2019. doi: 10.1109/LRA.2019.2901683.

Y. Wu, J. Gou, X. Hu, and Y. Huang. A new consensus theory-based method for
formation control and obstacle avoidance of UAVs. Aerosp. Sci. Technol., 107, 2020.
doi: 10.1016/j.ast.2020.106332.

K. Xiao, L. Ma, S. Tan, Y. Cong, and X. Wang. Implementation of UAV Coordination
Based on a Hierarchical Multi-UAV Simulation Platform. arXiV (Ounline), May 2020.
URL https://arxiv.org/abs/2005.01125v3.

Y. Mei, Y.-H. Lu, Y. C. Hu, and C. S. G. Lee. Deployment of mobile robots with energy
and timing constraints. IEEE Transactions on Robotics, 22(3):507-522, 2006.

J. N. Yasin, M. H. Haghbayan, J. Heikkonen, H. Tenhunen, and J. Plosila. Formation
Maintenance and Collision Avoidance in a Swarm of Drones. In ISCSIC 2019: 2019
3rd International Symposium on Computer Science and Intelligent Control, 2019. doi:
10.1145/3386164.3386176.

55

[68]

[69]

[70]

[71]

[72]

D. Zelazo, A. Franchi, H. H. Biilthoff, and P. Robuffo Giordano. Decentralized rigidity
maintenance control with range measurements for multi-robot systems. Int. J. Rob.
Res., 34(1), 2015. doi: 10.1177/0278364914546173.

D. Zelazo, P. R. Giordano, and A. Franchi. Bearing-only formation control using an
SE(2) rigidity theory. In Proc. IEEE Conf. Decis. Control, volume 54, page 6121-6126,
2015. doi: 10.1109/CDC.2015.7403182.

J. Zhang, W. Wang, Z. Zhang, K. Luo, and J. Liu. Cooperative Control of UAV
Cluster Formation Based on Distributed Consensus. In IEEE International Conference
on Control and Automation, ICCA 2019, 2019. doi: doi:10.1109/ICCA.2019.8899916.

S. Zhao. Affine Formation Maneuver Control of Multiagent Systems. IEEE Trans.
Automat. Contr., 63(12):4140-4155, December 2018. doi: 10.1109/TAC.2018.2798805.

Y. Zhao, L. Jiao, R. Zhou, and J. Zhang. UAV formation control with obstacle avoidance
using improved artificial potential fields. In IEEFE 2017 36th Chinese Control Conference
(CCC), July 2017. doi: 10.23919/ChiCC.2017.8028347.

56

